Systems Engineering/Process Control L4

Input-output models

- Laplace transform
- Transfer functions
- Block diagram algebra

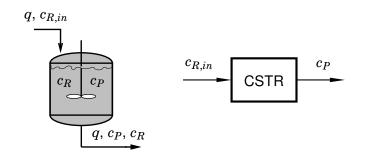
Reading: Systems Engineering and Process Control: 4.1–4.4

Laplace transform

- Powerful mathematical tool to study and solve linear differential equations
- Example:

What is output y(t) given a specific input u(t)?

Example: CSTR



- Constant volume V and flow q
- First order reaction $R \rightarrow P$
- Reaction rate $r_R = -r_P = -kc_R$

Assume system is in equilibrium.

How does c_P respond to unit step changes in $c_{R,in}$?

Example: CSTR

Mass balance:

$$In + Prod = Out + Acc$$

$$qc_{R,in} + Vr_R = qc_R + V \frac{dc_R}{dt}$$

$$Vr_P = qc_P + V \frac{dc_P}{dt}$$

Second order state-space model:

$$\begin{aligned} \frac{dc_R}{dt} &= -\left(\frac{q}{V} + k_1\right)c_R + \frac{q}{V}c_{R,in}\\ \frac{dc_P}{dt} &= k_1c_R - \frac{q}{V}c_P \end{aligned}$$

How to solve equations with Laplace transform?

Laplace transform

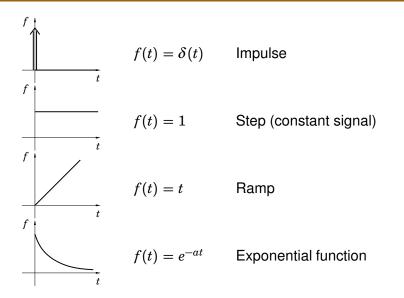
Transforms a function f(t) to another function F(s).

- f(t) is a function of time $t \ge 0$
- F(s) is a function of the "complex frequency" s

Definition:

$$F(s) = \mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt$$

Some common functions (signals)



The impulse function

- $\delta(t) = \text{impulse at time 0}$
- Also called Dirac function
- Infinitely high and infinitely thin, but with area 1

Example:

$$\frac{dV}{dt} = \delta(t)$$

Interpretation: "Injection of a unit volume at time 0"

Laplace transform of some common functions

Impulse:

$$\mathcal{L}{\delta(t)} = \int_0^\infty \delta(t) e^{-st} dt = 1$$

Step:

$$\mathcal{L}{1} = \int_0^\infty 1 \cdot e^{-st} dt = \left[\frac{e^{-st}}{-s}\right]_0^\infty = \frac{1}{s}$$

Exponential function:

$$\mathcal{L}\lbrace e^{-at}\rbrace = \int_0^\infty e^{-at} \cdot e^{-st} dt = \left[\frac{e^{-(s+a)t}}{-(s+a)}\right]_0^\infty = \frac{1}{s+a}$$

Excerpt from *collection of formulae* p. 6:

	Laplace transform $F(s)$	Time function $f(t)$	
1	1	$\delta(t)$	Dirac function
2	$\frac{1}{s}$	1	Step function
3	$\frac{1}{s^2}$	t	Ramp function
1:			
6	$\frac{1}{s+a}$	e^{-at}	

Some properties of the Laplace transform

Excerpt from *collection of formulae* p. 5:

	Laplace transform $F(s)$	Time function $f(t)$	
1	$\alpha F_1(s) + \beta F_2(s)$	$\alpha f_1(t) + \beta f_2(t)$	Linearity
8	sF(s)-f(0)	f'(t)	Derivation i <i>t</i> -planet
12	$\frac{1}{s}F(s)$	$\int_0^t f(\tau)d\tau$	Integration i <i>t</i> -planet

More useful properties

Excerpt from *collection of formulae* p. 5:

	Laplace transform $F(s)$	Time function $f(t)$	
3	$e^{-as}F(s)$	$\begin{cases} f(t-a) & t-a > 0\\ 0 & t-a < 0 \end{cases}$	Time delay
14	$\lim_{s\to 0} sF(s)$	$\lim_{t\to\infty}f(t)$	End point theorem

- 1. Laplace transform all terms in the differential equation
 - Use collection of formulae
- 2. Solve for signal Y(s)
- 3. Use inverse Laplace transform to find y(t)
 - Divide into partial fractions first, if needed
 - Use collection of formulae

Example 1

Solve

$$\dot{y} = -3y$$

with initial state y(0) = 5.

1. Laplace transform:

$$sY(s) - 5 = -3Y(s)$$

2. Solve for
$$Y(s)$$
:

$$(s+3)Y(s) = 5$$

$$Y(s) = \frac{5}{s+3}$$

3. Inverse Laplace (transform nbr. 6):

$$y(t) = 5e^{-3t}$$

Example 2: CSTR

Assume q = V = k = 1, $c_R(0) = c_P(0) = 0$, $c_{R,in} = 1$ (step fcn):

$$\dot{c}_R = -2c_R + c_{R,in}$$

 $\dot{c}_P = c_R - c_P$

1. Laplace transform:

$$sC_R(s) = -2C_R(s) + C_{R,in}(s)$$

 $sC_P(s) = C_R(s) - C_P(s)$

2. Solve for $C_P(s)$:

$$C_R(s) = \frac{1}{(s+2)} C_{R,in}(s)$$

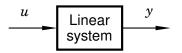
$$C_P(s) = \frac{1}{s+1} C_R(s) = \frac{1}{(s+1)(s+2)} C_{R,in}(s) = \frac{1}{(s+1)(s+2)s}$$

Example 2: CSTR

3. Inverse Laplace (transform nbr. 24):

$$c_{P}(t) = \frac{1}{2} \left(1 + e^{-2t} - 2e^{-t} \right)$$

Transfer function



- Assume that all initial states are zero
- After Laplace transform, input-output relation can be written:

$$Y(s) = G(s)U(s)$$

G(s) is called the system transfer function

Poles and zeros

Often transfer function is be written as:

$$G(s) = rac{Q(s)}{P(s)}, \quad \deg Q \leq \deg P$$

where Q(s) and P(s) are polynomials

Zeros: roots to Q(s) = 0

Poles: roots to P(s) = 0 (characteristic equation)

Can be drawn in singularity diagram/pole-zero-diagram

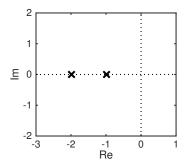
- Poles: x
- Zeros: o

Example: CSTR

• Input-output model: $C_P(s) = \frac{1}{(s+1)(s+2)}C_{R,in}(s)$

• Transfer function:
$$G(s) = \frac{1}{(s+1)(s+2)}$$

- Zeros: 1 = 0 has no solutions
- Poles: (s + 1)(s + 2) = 0 has solutions $s_1 = -1$, $s_2 = -2$
- Singularity diagram:



Connection state-space form-transfer function

Linear time invariant system on state-space form

$$\frac{dx}{dt} = Ax + Bu$$
$$y = Cx + Du$$

- Assume all initial states are zero: x(0) = 0
- Laplace transform:

$$sX(s) = AX(s) + BU(s)$$
$$Y(s) = CX(s) + DU(s)$$

Connection state-space form-transfer function

• Solve for X(s):

$$(sI - A)X(s) = BU(s)$$

 $X(s) = (sI - A)^{-1}BU(s)$

• Insert into equation for Y(s):

$$Y(s) = C(sI - A)^{-1}BU(s) + DU(s)$$
$$= \underbrace{\left(C(sI - A)^{-1}B + D\right)}_{G(s)}U(s)$$

- Denominator to G(s) given by det(sI A)
- Poles to $G(s) \iff$ eigenvalues of A

Comparison

State-space model

$$\begin{array}{c} u(t) \\ \hline x = Ax + Bu \\ y = Cx + Du \end{array} \begin{array}{c} y(t) \\ \hline \end{array}$$

System response:

$$\begin{aligned} x(t) &= e^{At} x(0) \\ &+ \int_0^t e^{A(t-\tau)} B u(\tau) \, d\tau \\ y(t) &= C x(t) + D u(t) \end{aligned}$$

Stability: Decided by eigenvalues to *A*. Input-output-model

$$U(s)$$
 $G(s)$ $Y(s)$

System response:

$$Y(s) = G(s)U(s)$$

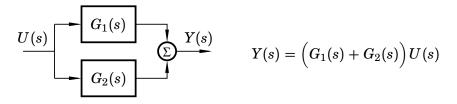
Stability: Decided by poles to G(s).

Block diagram computations with transfer functions

Serial connection:

$$\underbrace{U(s)}_{G_1(s)} \underbrace{G_2(s)}_{Y(s)} Y(s) = G_2(s)G_1(s)U(s)$$

Parallel connection:



Block diagram computations with transfer functions

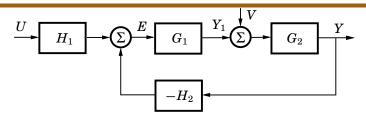
Feedback:

$$U(s)$$

 Σ $G_1(s)$ $Y(s)$
 $-G_2(s)$

$$\begin{split} Y(s) &= G_1(s) \Big(U(s) - G_2(s) Y(s) \Big) \\ Y(s) \Big(1 + G_1(s) G_2(s) \Big) &= G_1(s) U(s) \\ Y(s) &= \frac{G_1(s)}{1 + G_1 G_2(s)} U(s) \end{split}$$

Example



Compute transfer function from U and V to Y.

$$Y = G_2(V + Y_1)$$

$$Y_1 = G_1E$$

$$E = H_1U - H_2Y$$

Solve for Y:

$$Y = \frac{G_2 G_1 H_1}{1 + G_2 G_1 H_2} U + \frac{G_2}{1 + G_2 G_1 H_2} V$$