Systems Engineering/Process Control L2

- Process models
- Step-response models
- The PID controller

Reading: Systems Engineering and Process Control: 2.1–2.5

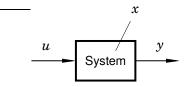
Process models

We will primarily work with processes that are described by

continuous (as opposed to discrete – FX),
linear (as opposed to nonlinear – F3, F5),
time invariant (as opposed to time varying),
dynamic (as opposed to static)

systems

Static vs dynamic systems



Static system:
$$y(t) = f(u(t))$$

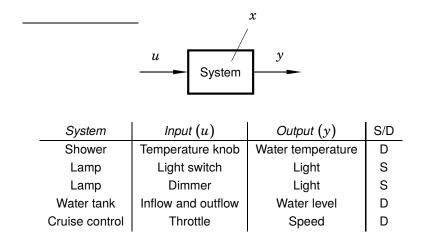
Output
$$y$$
 right now depends only on input u right now

New equilibrium is found instantaneously after input changes

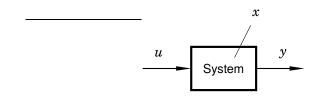
Dynamic system:
$$y(t) = f(u_{[0, t]}, x(0))$$

- Output y(t) depends on all old inputs $u_{[0, t]}$ and the system initial state x(0)
- For (stable) dynamical systems, there is a lag before a new equilibrium is reached after an input change

Static or dynamic system?

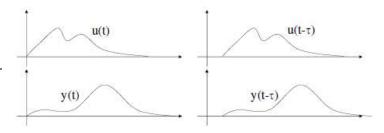


Time invariant vs time varying systems



Time invariant system: The system dynamics does not change over time

Input delayed by τ time units \Rightarrow output delayed by τ time units:



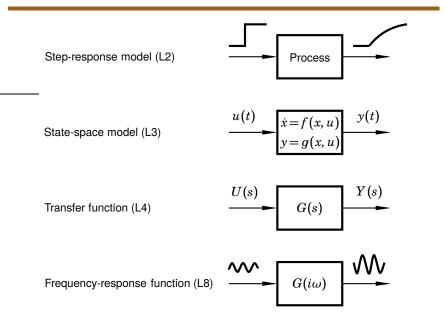
Time varying systems:

- Lamp with switch and timer: Different response depending on time
- ► Rockets: Decreasing fuel amount ⇒ system dynamics change

Time invariant systems:

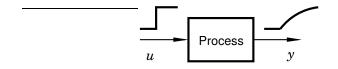
- Lamp with switch without timer
- Water tank with inflows and outflows
- Cruise control in the car

Process models used in course



Step-response experiment

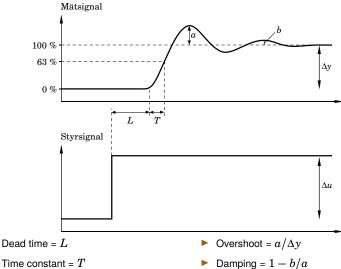
A simple method to learn the process dynamics



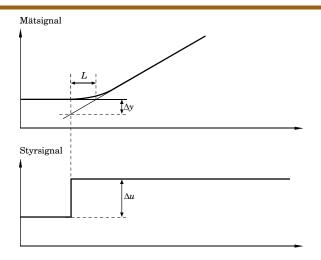
- Wait until process is in equilibrium
- Change input u with a step of size Δu
- Record and analyze output y

(We assume here one input and one output)

Step-response example



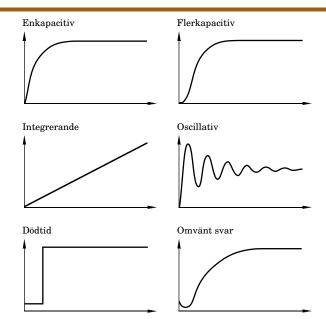
Step-response for integrating process



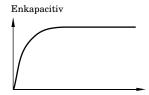
Dead time = L

• Velocity gain =
$$K_v = \Delta y / (\Delta u \cdot L)$$

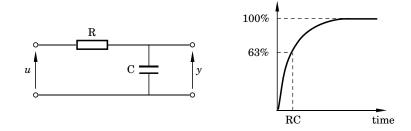
Step-response for some different process types



Single-capacitive processes

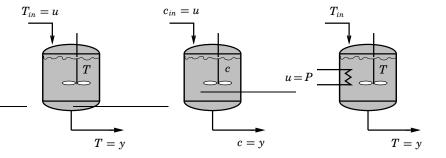


Example: RC circuit

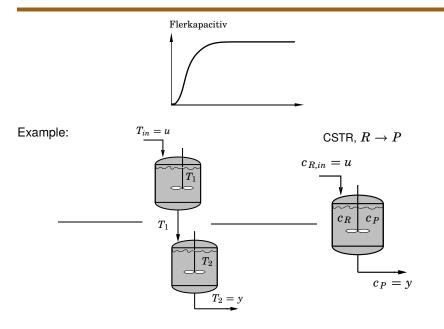


Single-capacitive processes

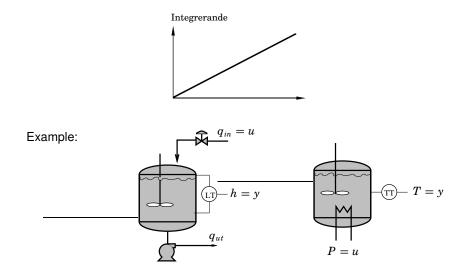
Example: Continuously stirred tank (CST) with constant flow



Multi-capacitive processes



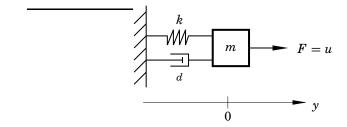
Integrating processes



Oscillatory processes

Oscillativ

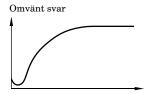
Example: Mechanical system with little damping



Dead time processes



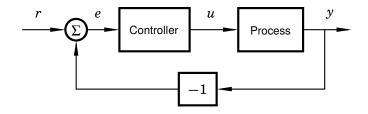
Inverse response processes



Examples:

- Parallel parking with car
 - Input: steering wheel angle
 - Measurement: (smallest) distance from front wheel to curb
- Bus turn
 - Input: steering wheel angle
 - Measurement: (smallest) distance from back of bus to curb

The standard feedback loop



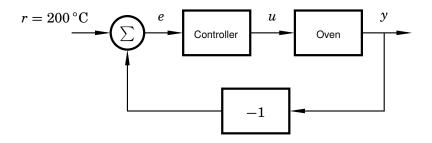
- Objective: measurement signal y should follow setpoint (reference) r
- Controller computes input *u* from control error e = r y

Simple feedback controllers

On/off-controller

- The simplest feedback controller
- PID-controller
 - The most common controller in industry
 - P = proportional
 - I = integral
 - D = derivative

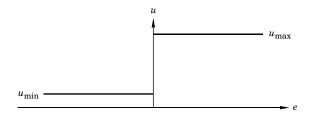
Example: Oven



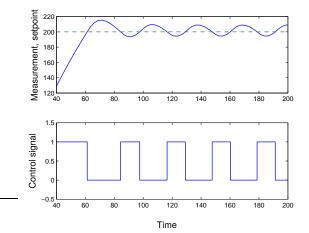
- y = measured temperature (output/measurement signal)
- r = desired temperature (setpoint/reference)
- u = heating effect ($0 \le u \le 1$) (control signal/input)

On/off-control

$$u(t) = \begin{cases} u_{\text{max}}, & \text{if } e(t) > 0 \ (i.e., y(t) < r(t)) \\ u_{\text{min}}, & \text{if } e(t) < 0 \ (i.e., y(t) > r(t)) \end{cases}$$



Simulation of oven with on/off-control



Drawbacks with on/off-control

- Oscillations
- Wear on actuators
- Works only for processes with:
 - simple dynamics
 - Iow performance requirements

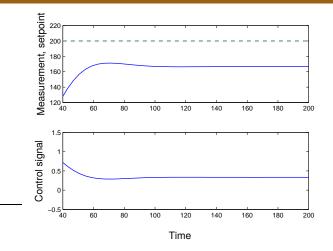
P-control

Use proportional (to control error) control:

$$u(t) = u_0 + Ke(t)$$

- K = proportional gain
- (Simplest control structure except on/off)

Simulation of oven with P-control ($u_0 = 0$)



Stationary control error (at stationarity $y(t) \neq r(t)$)

Mini problem

Approximately what K-value is used in previous slide?

The stationary error when using a P controller is:

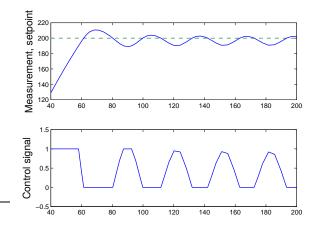
$$e = \frac{u - u_0}{K}$$

Two ways to eliminate stationary error (i.e., get e = 0):

• Let
$$K \to \infty$$

Select u_0 such that e = 0 in stationarity (difficult to find such u_0)

Simulation of P-control with increased *K*



Faster control but more oscillations

PI-control

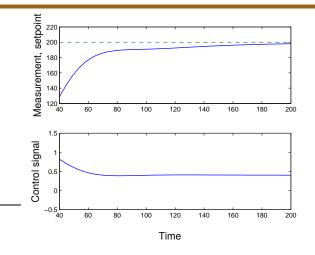
- Are there other ways to remove stationary errors?
- ▶ Update *u*⁰ automatically: Replace the constant term *u*⁰ with integral part:

$$u(t) = K\left(e(t) + rac{1}{T_i}\int_0^t e(au)d au
ight)$$

► T_i = integral time

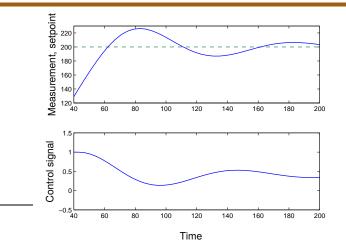
(Note: The PI-controller is a dynamical system in itself!)

Simulation of oven with PI-control



- Control error goes asymptotically towards zero
- Can prove that stationary error is always zero when using PI-control (provided closed loop system is stable)

Simulation of oven with decreased T_i

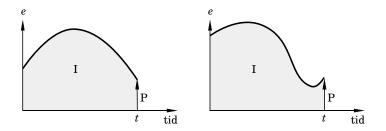


- More integral action
- Faster control but more oscillations

Prediction

A PI-controller does not predict future errors

The same control signal is obtained in both of the following cases:



Want something that can react on predicted future errors

PID-control

This can be achieved by adding a derivative (D) part to the PI controller:

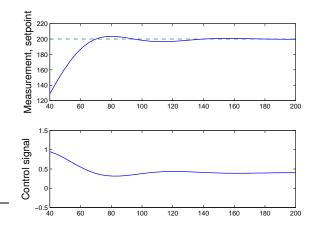
$$u(t) = Kigg(e(t) + rac{1}{T_i} \int_0^t e(au) d au + T_d rac{de(t)}{dt} igg)$$

• T_d = derivative time

The derivative part tries to estimate the error change in T_d time units:

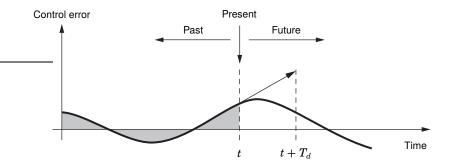
$$e(t+T_d) - e(t) \approx +T_d \frac{de(t)}{dt}$$

Simulation of oven with PID-control

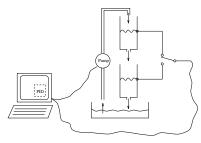


Fast and well damped response, no stationary error

Summary of PID



The parameters to set: K, T_i, T_d



Control of water level in upper/lower tank

- Open-loop and closed-loop control
- Manual and automatic control
- Empirical setting of K, T_i, T_d

Controller type selection

- (On/off-controller)
- P-controller
- PD-controller
- PI-controller
- PID-controller
- I-controller

P-controller

Is good enough in some cases:

- Control of single-capacitive and integrating processes
 - ▶ big K gives small stationary error; no problems with stability
- Level control in buffer tanks
 - small K as long as tank is not almost empty or almost full
- As controller in inner loop in cascade control structure (F9)

PD-controller

Suitable in some cases:

- Control of some multi-capacitive processes, e.g., slow temperature processes
- Big K and T_d requires measurements with little noise

PI-controller

The most common choice of controller

- Eliminates stationary errors
- ▶ With cautious settings (small *K* big *T_i*) it works on all stable processes including dead time processes and processes with inverted response

PID-controller

- Can give improved performance compared to PI-controller, especially for multi-capacitive and integrating-capacitive processes
 - K can be increased and T_i decreased compared to PI-control
- Derivative part is sensitive to measurement noise

I-controller

A pure I-controller is given by

$$u(t) = k_i \int_0^t e(\tau) d\tau$$

•
$$k_i =$$
integral gain

Can be used for static processes or single-capacitive processes to eliminate stationary errors