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Stability is Important!
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Stability Margins are also Important!

X29
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Harry Nyquist (1889-1976)

Nilsby, Sweden → North Dakota → Yale → Bell Labs

• Nyquist’s stability criterion
• The Nyquist frequency
• Johnson-Nyquist noise 4



Nyquist’s Criterion



Nyquist’s Criterion — A Motivation
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e(t) = sinω0t

With switch in position 2, after transients (G0 stable):

e(t) = −|G0(iω)| sin(ωt + arg G0(iω))
= |G0(iω)| sin(ωt + arg G0(iω) + π)

Find ω0 such that arg G0(iω0) = −π.

Also assume |G0(iω0)| = 1
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Oscillation will continue in closed loop. We have a marginally stable
system.

Seems likely that

• |G0(iω0)| < 1 ⇒ Oscillation damped out (Asymptotic stability)
• |G0(iω0)| > 1 ⇒ Oscillation increases (Instability)
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Bode and Nyquist diagrams

We most often plot Bode and Nyquist diagrams for “the open-loop
system” GO (aka loop gain L)

L = GO = GRGp

and from this predict how the closed-loop system
GRGp

1 + GRGp

will behave.

GR GP
u+r e y

−1
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Nyquist’s Criterion

-1 Re G0(iω)

Im G0(iω)

Nyquist’s Criterion (simplified version):
Assume G0(s) is stable.
Then the closed loop system (simple negative feedback) is stable if the
point −1 lies to the left of G(iω) as ω goes from 0 to ∞. 7



Example

K
s(s+1)(s+2)+r y

−1

Loop gain (Open system)

G0(iω) = K
iω(1 + iω)(2 + iω)

= −Ki(1− iω)(2− iω)
ω(1 + ω2)(4 + ω2) = −Ki(2− ω2 − 3iω)

ω(1 + ω2)(4 + ω2)

= −3K
(1 + ω2)(4 + ω2) + i K (ω2 − 2)

ω(1 + ω2)(4 + ω2)

lim
R→∞

G0(Re iφ) = 0 lim
r→0

G0(re iφ) = K
2r e−iφ
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Stability for closed-loop system

Crossing with negative real axis:
Phase = -180 deg =⇒ Im {GO(iω0)} = 0 =⇒ ω0 =

√
2

G0(i
√
2) = − 3K

3 · 6 = −K
6

Stable if K < 6. Two poles in right half-plane if K > 6. 9



Nyquist’s criterion — Some comments

• Gives insight
• Easy to use, only requires frequency response
• Slightly complex to prove
• Version of Nyquist Criterion also works if G0(s) is unstable.

10



Quiz

Nyquist curves of four (open-loop stable) systems.

Which systems are stable in closed loop (simple negative feedback)?

Amplitude margin: "Gain increase until instability"

Phase margin: "Phase drop without instability"
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Stability Margins



Stability Margin

-1

1/Am

φm

G0(iωc)

Re G0(iω)

Im G0(iω)

Amplitude margin: "Gain increase without instability"

Phase margin: "Phase decrease without instability"
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Stability Margin

-1

1/Am

φm

G0(iωc)

Re G0(iω)

Im G0(iω)

Important with sufficient stability margins for good control performance

Rule of thumb: Am > 2, φm > 45◦
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Delay Margin

Augment open-loop transfer function G0(s) with a delay L:

Gnew
0 (s) = e−sLG0(s)

We have

|Gnew
0 (iω)| = |G0(iω)|

arg Gnew
0 (iω) = arg G0(iω)− ωL

Same cross-over frequency ωc as G0, so new phase margin

ϕnew
m = ϕm − ωcL

For stability the delay L must be smaller than

Lm = ϕm
ωc
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Amplitude & Gain Margins in Bode Plots

ωc is called the cross-over frequency.
14



Sensitivity Function



The Sensitivity Function

The closed-loop transfer function

S(s) = 1
1 + GR(s)GP(s)

is called the sensitivity function.

Gives much information about closed-loop control performance.
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Interpretation of Sensitivity Function (1/3)

Yol (s) = . . . L(s) + . . . N(s)

Ycl (s) = . . . L(s) + . . . N(s)
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Interpretation of Sensitivity Function (1/3)

Ycl (s) = GP(s)L(s) + 1 · N(s)

Ycl (s) = GP(s)
1 + GR(s)GP(s)L(s) + 1

1 + GR(s)GP(s)N(s)
16



Interpretation of Sensitivity Function (1/3)

Yol (s) = GP(s)L(s) + 1 · N(s)

Ycl (s) = GP(s)
1 + GR(s)GP(s)L(s) + 1

1 + GR(s)GP(s)N(s)

The sensitivity function quantifies the effect of feedback.

|S(iω)| < 1 ⇒ disturbances with frequency ω are reduced by controller
|S(iω)| > 1 ⇒ disturbances with frequency ω are magnified by controller

Typically the controller will always increase disturbances at some
frequencies. Preferably not at frequencies with much disturbances.
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Interpretation of Sensitivity Function (2/3)

1/|S(iω)| is the distance between the Nyquist curve and −1.

Ms = supω |S(iω)| can be used to quantify the stability margin.
18



Interpretation of Sensitivity Function (3/3)

The sensitivity function quantifies closed-loop sensitivity to modeling
errors. Let GP be our process model.

G0
P = GP(1 + ∆G)

G0
P is the actual process dynamics, ∆G is the relative modeling error .

Can show that
Y 0 =

(
1 + S0∆G

)
Y

S0 is the sensitivity function of the real system.

Y 0 − Y
Y = S0∆G
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Example: Internet Congestion Control

See Example 9.5 in [Åström & Murray] for details.
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Example: Operational Amplifier

Transfer function from v1 to v2;

Gcl (iω) = −Z2
Z1

Z1G(iω)/(Z1 + Z2)
1 + Z1G(iω)/(Z1 + Z2)

≈ −Z2/Z1 (If closed loop is stable, and ω within bandwidth)

What about stability? Just look at Nyquist curve of

Go(s) = Z1G(s)
Z1 + Z2

Don’t need model of the op-amp, just measured transfer function!
(Power of Nyquist’s Criterion) 21



Content

This lecture

1. Nyquist’s Criterion

2. Stability Margins

3. Sensitivity Function

Next lecture

• State feedback
• Controllability
• Integral action
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Extra

• Nyquist criterion (general case)
• Non-intuitive stability case (from Quiz)

Based on Chapter 11 of
http://www.cds.caltech.edu/∼murray/amwiki/

23



Nyquist criterion and Cauchy’s argument variation principle

Nyquist’s stability theorem

Consider a closed loop system with the loop transfer function Go(s) that
has P poles in the region enclosed by the Nyquist contour. Let N be the
net number of clockwise encirclements of −1 + 0i by Go(s) when s
encircles the Nyquist contour C in the clockwise direction. The closed
loop system then has Z = N + P poles in the right half-plane.

Note: We are considering an open loop transfer function, the loop gain

L = Go

to conclude about the stability of the closed loop system

Gcl = L
1 + L = Go

1 + Go

.

24
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Cauchy’s argument variation principle

Cauchy’s argument variation principle

How many zeros does a rational function f (·) have in a region C?

1
2π∆s∈C arg f (s) = P − N

To determine the number of roots in the right half plane we choose the
closed curve C in the following way

C

Paths for C:

s = iω, ω ∈ (0,∞)

s = Re iθ, R →∞, θ : π/2→ −π/2

s = iω, ω ∈ (−∞, 0)

s = re iθ, r → 0, θ : −π/2→ π/2

Small half-circle around the origin avoids singularities on the boundary,
(e.g., in case of integrator 1/s in the loop gain)
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Stability for feedback

GO+r y

−1

The closed-loop system Go
1 + Go

is asymptotically stable if and only if all
zeros to

1 + G0(s)

are in the left half-plane.

26



Cauchy’s argument variation principle for feedback

N = # zeros for 1 + G0(s) inside curve C
P = # poles for 1 + G0(s) inside curve C

= # poles for G0(s) inside curve C

Argument variation principle gives

P − N = # rev. around origin for 1 + G0(s), s ∈ C
= # rev. around −1 + 0i for G0(iω), ω ∈ R

27



Nyquist criterion

(Simplified):
If Go(s) is stable (P = 0), then the closed-loop system

Go
1 + Go

is stable (N = 0) if and only if the Nyquist-curve Go(iω) does NOT
encircle −1 + 0i .

(General):
The difference between the number of unstable poles in Go(s) and the
number of unstable poles in Go/(1 + Go) is equal to the number of turns
of the Nyquist-curve around −1 + 0i . (Note: direction important if
counted as positive or negative turns!)
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When ’intuition’ doesn’t hold, we rely on mathematics

From the Quiz of Lecture 5 we asked for which loop gain systems under
simple negative feedback which gave stable closed-loop systems.

GO+r y

−1

What happens with the system in the picture (left) when we close the
loop and why is it still stable?

29



When ’intuition’ doesn’t hold, we rely on mathematics

Look at the loop gain L = Go(s) = 3 · 1s ·
1

(s + 1)2 · (s + 6)2

The first intersection with negative real axis occurs at

Go(iω) = −12 for ω = 2,

and the second at

Go(iω) = −4.5 for ω = 3. 29
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Closed-loop system

Gcl = Go(s)
1 + Go(s) =

3 · 1s ·
1

(s + 1)2 · (s + 6)2

1 + 3 · 1s ·
1

(s + 1)2 · (s + 6)2
= s2 + 12s + 36

s3 + 3s2 + 13s + 36

Stability can be tested with e.g., Routh-Hurwitz criterion

(i) a1 = 3 > 0
a2 = 13 > 0
a3 = 36 > 0

(ii) a1 · a2 > a3 (3 · 13 = 39 > 36)

and thus the closed-loop system is asymptotically stable.

» roots([1 3 13 36])
ans =

-0.0709 + 3.5482i
-0.0709 - 3.5482i
-2.83
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