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1. Introduction to computation and

simulation in MATLAB

The exercises in this chapter are to familiarize yourself with MATLAB.
The mathematics should not be new to you. However, if you are unsure
about it, please go back to your Linear algebra and Analysis books and
review the material needed.

1.1 Matrix algebra

a. Given the following matrix

A =

(

a b

c d

)

compute the determinant, inverse of A by hand. Also, describe how to
calculate the eigenvalues λ.

b. To create a matrix in MATLAB use the following principle

my matrix = [1 2; 3 4];

[ and ] begins and ends the matrix. Elements are separated by space
(or comma) and rows are separated by ;.
Consider matrices

A =





2 0 0

0 3 4

0 4 9



 , B =





1

2

3



 .

c. Calculate A · B and BT · A. What about B · A? The transpose of a
matrix A is written as A'.

d. Give the eigenvalues and eigenvectors of A by the function eig. To get
information about a function in MATLAB write help FUNCTION

e. Give the transpose and the determinant of A. The command for the
determinant is det.

f. Give the inverse of A.

1.2

a. In matlab define the matrix

C =

(

1 2

3 4

)

Try calculating C.*C and C*C. What is the difference?

b. Do you think its possible to calculate A.*B?
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Chapter 1. Introduction to computation and simulation in MATLAB

c. To access individual elements of a matrix you can use C(2,1). The
first arguments gives the row, and the second the column. What will
the result of C(2,1) be?

1.3 Anonymous functions and plots
Consider the function y(x) = 2x. It can be written in MATLAB as follows

y = @(x) 2*x;

To plot this function over an interval, interval = [−1 3], use
fplot(y,interval).

a. Plot y(x) = e−x/2cos(2πx) for −6 ≤ x ≤ 3. Give your plot a title as
well as labels on the axes. Useful commands: fplot, xlabel, ylabel,
title.

b. Modify your plot such that you only show function values for−4.5 ≤ x ≤ −1
and −10 ≤ y ≤ 10. Useful command: axis.

c. Integrate the function over −4.5 ≤ x ≤ −1. Useful commands: integral,
quad.

d. Find the solution to f(x) = 0 when f(x) = x3 + 2x − 1. Comment on
the answer. Useful command: fsolve.

e. Write a function that takes an input A and calculates element wise
multiplication. Try it on mat = ones(5,3).

f. Write a function that takes a 3x1 vector and reverses its element. As-
sume that the user inputs a correct input. Test it on v = [1,2,3]'.

1.4 Function script
Open a function template and write the script for a function that takes
a matrix as its input and the sum of its diagonal elements as its output.
Useful commands: diag, sum and size.

1.5 Solve ordinary differential equations

a. Find the solution x(t) to dx/dt = cx, when x(0) = 1, by hand.

b. In MATLAB, the solver ode45 can be used to solve ODEs. For instance,
if you would like to solve the ODE given in the previous subproblem
with c = −2, the code could look as follows

c = −2;
x 0 = 1;

timespan = [0 6];

f = @(t,x) c*x;

[T,Y] = ode45(f,timespan,x 0);

Then, [T,Y] includes the solution to dx/dt = f in the time interval
timespan for the initial condition x 0. Use help ode45 for more
details on this solver works. Perform the computations and plot the
solution.

4



Chapter 1. Introduction to computation and simulation in MATLAB

c. Consider the following differential equation

ÿ + 7ẏ − 3y = 0,

y(0) = 0,

ẏ(0) = 1,

where ẏ = dy/dt and ÿ = d2y/dt2. It can be written as a system of
first order differential equations by the use of variable transformation.
Consider variables x1 = y and x2 = ẏ. Then ẋ1 = ẏ = x2 and ẋ2 = ÿ =
−7ẏ + 3y = −7x2 + 3x1, and we can write the system as

ẋ1 = x2

ẋ2 = 3x1 − 7x2

with x1(0) = y(0) = 0 and x2(0) = ẏ(0) = 1. When the system is
on first order, we can use MATLABs solver ode45 to solve it, as in
the previous subproblem. Solve the differential equation in the interval
0 ≤ t ≤ 5. Plot the solution.

1.6 Some Debugging
In the code below there is an error in each of the section. To run a
section, you can hit ctrl-enter or cmd-enter depending on your OS.
Try to use the error messages! When you receive multiple error mes-
sages, its usually the top one that you should focus on.

%% Define matrices

A = [5 −3, 1;

3, 4]

B = [2;1];

%% Calculate matrix multiplication

prod = A.*B

%% Solve and plot ode

f = @(x) x.ˆ2−x;
[t,y] = ode45(f,[0,10],0.5)

plot(t,y(:,1))
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2. Biochemical Reactions: equilibrium,

steady state and control

2.1 The balance equations governing the dynamics of X, Y and Z in the
following reaction

X
k1−−⇀↽−−
k−1

Y
k2−⇀ Z,

are given as follows,

dx

dt
= −k1x+ k−1y,

dy

dt
= k1x− (k−1 + k2)y,

dz

dt
= k2y,

where x = [X], y = [Y ] and z = [Z] and parameters k1, k−1, k2 are
positive and constant. Here, the distribution volume V of each com-
partment is identical. Thus, we can easily write the balance equations
in terms of the concentrations instead of the masses. The mass of each
reactant is given by its concentration times V .

a. Note that dx/dt+ dy/dt+ dz/dt = 0 and we have that

x(t) + y(t) + z(t) = c,

where c > 0 is some constant. What does this mean?

b. Find the equilibrium of the system in terms of the constant c.

c. Given parameter-values k1 = 1, k−1 = 0.5, k2 = 0.8, simulate the
system with initial values x0 = 10, y0 = 0 and z0 = 0 for 20 time steps.
Does the system reach its equilibrium?

d. Assume k2 = 0.8(1 + 10/(z − 11)2), i.e., dynamic instead of constant.
Simulate the system again, with the given initial condition. How does
this change the dynamics? Would you describe this as positive or neg-
ative feedback with respect to z?

2.2

a. Simulate and plot the concentrations for the substrate S, enzyme E,
substrate-enzyme complex C and the end product P for the basic en-
zymatic reaction

S +E
k1−−⇀↽−−
k−1

C
k2−⇀ P + E

using the following set of parameters; k1 = 0.1, k−1 = 0.01 and k2 =
0.02, and with the following initial conditions [S]0 = 0.15 [mmol/l],
[E]0 = 0.01 [mmol/l], [C]0 = 0 [mmol/l] and [P ]0 = 0 [mmol/l].
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Chapter 2. Biochemical Reactions: equilibrium, steady state and control

b. Derive the Michaelis Menten relation for the enzymatic reaction, i.e.,
determine Vmax and Km in

d[P ]

dt
=

Vmax[S]

Km + [S]

when conservation of enzyme and steady state of enzyme and complex
is assumed.

c. Vmax is the maximal rate of the reaction. Can you see why?

d. What happens if the initial concentration of the enzyme is doubled?

2.3 The data in Table 2.1 describes the concentration and reaction rates of
a chemical process.

a. Plot the velocity versus the Concentration. Is it an enzymatic reaction
following the Michaelis-Menten relationship? Can you give some rough
estimates of Vmax and Km from this graph?

b. Plot the inverse of the velocity versus the inverse of the concentration.
This plot is commonly referred to as a Lineweaver-Burk plot. Can you
give some rough estimates of Vmax and Km from this graph?

Table 2.1 Reaction Data for problem 3

Substrate Reaction

Concentration [mM] Velocity [mM/s]

0.1 0.04

0.2 0.08

0.5 0.17

1.0 0.24

2.0 0.32

3.5 0.39

5.0 0.42

2.4 Competitive Inhibition: Some enzymes may bind other substances than
the target substrate to the binding site, thereby inhibiting the for-
mation of the intended substrate-enzyme complex and the subsequent
end-product. Such a situation is characterized by the following reaction
dynamics:

S + E
k1−−⇀↽−−
k−1

C1
k2−⇀ P + E

I + E
k3−−⇀↽−−
k−3

C2

where I is the inhibitor.

We can derive the following relationship for the reaction velocity of the
product reaction, considering steady-state conditions for the enzyme E
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Chapter 2. Biochemical Reactions: equilibrium, steady state and control

and enzyme complexes C1 and C2 and preservation of the total enzyme
content, i.e., [E] + [C1] + [C2]:

d[P ]

dt
=

Vmax[S]

[S] +Km(1 + [I]/KI)

where [I] is the concentration of the inhibitor, Km = (k−1+k2)/k1 and
KI = k−3/k3.

a. Consider [I] to be bounded. Is Vmax still the maximal reaction rate?

b. Consider [S] to be bounded. What happens if [I] → ∞?

c. What happens if [I] = 0?

d. Describe in your own words how the inhibitor I regulates the enzymatic
reaction.
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3. Compartment models and simulation in

Simulink

3.1 Consider the balance equations

dx1
dt

= −k1x1 + k−1x2,

dx2
dt

= k1x1 − (k−1 + k2)x2,

dx3
dt

= k2x2 − v,

y = x2/V2

where x1, x2 and x3 are the masses of the quantities of the respective
compartments, with distribution volumes V1, V2 and V3. Furthermore,
y is a measurement while k1, k−1, k2 and v are positive constants.
The constant v is the degradation rate of x3. Draw a schematic of the
three-compartment model.

3.2 Consider the schematic of a compartmental model as below

y

x1 x2u
k k

where the distribution volume of the two compartments are both equal
to 1 dl, and omitted from the schematic, i.e., the mass and concen-
tration has identical values. Furthermore, y is a measurement of the
concentration in compartment 2. The mass x1 is increased by u and
linearly transformed into x2 with rate k. Furthermore, x2 is decreased
linearly with rate k.

a. The rates are given in per milli second while masses and concentrations
are given in mg and mg/dl. Give the units for x1, x2, u, y, k, dx1/dt
and dx2/dt.

b. Give the balance equations of the system.

c. Determine the equilibrium when u = u0.

d. Write the balance equations on the compact form

ẋ = Ax+Bu, y = Cx+Du,

where A, B, C, D are possibly matrices, x = [x1 x2]
T is the state of

the system, u is the input and y is the output (measurement). This is
possible as the system is linear.

3.3 Given k = 1, determine the transfer function of the system in Prob-
lem 3.2 by using functions ss and tf from the control toolbox in
MATLAB. Simulate the system given u(t) = 1 for 0 ≤ t ≤ 8 with lsim.
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Chapter 3. Compartment models and simulation in Simulink

Type help lsim to get information about the function. What does
y(t) tend to as t → ∞?

In the previous exercises of this chapter we treated linear systems. How-
ever, nonlinear phenomena is common in physiology (e.g., the enzyme
reactions treated in the previous chapter). The analysis of nonlinear
systems is more involved than that for linear systems. However, to
simulate the systems behavior is often a very useful tool, as we have
seen through the use of ode45. In this last part of the exercise, we will
instead use SIMULINK for simulation, which is a buildt in graphical
simulation tool in MATLAB.

3.4 Start SIMULINK by writing simulink in the MATLAB command win-
dow. This makes the SIMULINK Library Browser window pop up. Go
to File → New → Model. In this window you can start to create your
SIMULINK model. Get familiar with some of the blocks that will be
used in the course; From Workspace, To Workspace, Constant,
Scope, Step and Sine Wave. You can connect two blocks by their
connection spots. Look at how Step and Sine Wave can be altered
and how they look by the use of a Scope. Try to save the result to
the workspace by To Workspace and plot it. Save the plots as an
.eps-file. Create a document, write something nice about the plot, add
the plot with a figure text, save the document as a .pdf-file.

3.5 Investigate the bacterial growth in a jam pot. Assume that the fraction
of bacteria is increasing proportional to the existing fraction of bacteria
x and decaying proportional to x2. This gives the following differential
equation for the dynamics

dx

dt
= bx− px2

where b, p > 0 are the birth and death rates.

a. Determine the equilibria of the system.

b. Assume x(0) = 0.8 [fraction of bacteria], b = 1 [1/hour] and p = 2
[1/(f. o. bac.·hour)]. Use SIMULINK to simulate the behavior of this
system. Use the Library Browser to find appropriate blocks and drag
them into the model sheet, see the figure below.

p and b can be defined in the current workspace. You simulate the
system by pressing the play button. In the block Scope, you can then
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Chapter 3. Compartment models and simulation in Simulink

view the time trajectory of x. Go to display→ blocks and check ”Sorted
Execution Order”. This will numerate the blocks in the order in which
they are first activated.

c. Start the system at x(0) = 0.1 and x(0) = 0, repsectively. What hap-
pens with the fraction of bacteria as t → ∞? Compare the behaviour to
that simulated in the previous subproblem as well as to the equilibria
of the system.

3.6 Infection; Bacteria-Leukocytes Predator-Prey System: Neuthrophiles
are specialised white blood cells (leukocytes), specialising in defending
against bacterial infections. Let B(t) denote the number of bacteria in
a wound and N(t) the number of neuthrophiles. The bacterial growth
factor is α [bacteria/hour] and the killing factor of the neuthrophiles β
[bacteria/hour] and assume that the entry rate of new neuthrophiles is
u(t) [neutrophiles/hour].

dB

dt
= αB(t)− β ·B(t) ·N(t)

dN

dt
= −γN(t) + u(t)

Simulate the system in Simulink with α = 3, β = 1.1, γ = 1.5, and with
initial conditions B(0) = 100, N(0) = 0 and let u(t) = 10 for t ≥ 0 and
zero otherwise, i.e., a step with magnitude 10. What happens if α is
large (> 8)?
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4. Linear systems and linearization

4.1 In this problem we will represent a linear system in two different ways.
Consider ...

y + 3ÿ + 2ẏ + y = u

where u and y are the input and output, respectively. For the first
representation, determine the transfer function from u to y via the
Laplace transform. For the second representation, choose x1 = y, x2 =
ẏ and x3 = ÿ as the states of the system and rewrite the dynamics as a
system of first order differential equations. What is the main difference
between these two representations? In the following chapters you will
learn when and how to use which representation for analysis of linear
systems.

4.2 Derive the formula G(s) = C(sI −A)−1B +D for a general system

ẋ = Ax+Bu

y = Cx+Du,

by means of the Laplace transform.

4.3 Determine the transfer functions and give differential equations, de-
scribing the relation between input and output for the following sys-
tems. Also, determine the poles of the systems by means of solving
det(sI −A) = 0.

a.

ẋ =









−2 0

0 −3







x+









5

2







u

y =


−1 1


x+ 2u

b.

ẋ =









−7 2

−15 4








x+









3

8








u

y =


−2 1


x

4.4 Determine the impulse and step responses of the systems in assign-
ment 4.3 both analytically and through MATLAB. The step response is
defined as the output of the system when the input is the step function
u(t) = 1 for t ≥ 0 and u(t) = 0 for t < 0. Consider impulse and step
in MATLAB.

In the previous exercises of this chapter we treated linear systems. The
analysis of nonlinear systems is more involved than that of linear sys-
tems. However, linearizing the nonlinear dynamics around a stationary
point can give us an approximation of the system’s behavior locally.
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Chapter 4. Linear systems and linearization

4.5 Approximate the functions f(x) = (x−2)2−9 with a first order Taylor
series expansion around x = 5. Plot f(x) as well as the first order
Taylor series expansion (which you just calculated) around x = 5. Can
you describe how f(x) is approximated?

4.6 Consider the following system

ẋ =(x− 2)2 − 9 + u2

y =x.

a. Find the stationary points (x0,u0) for x0 = 4.

b. Linearize the system around the stationary point with positive u0.

4.7 A process with output y(t) and input u(t) is described by the differential
equation

ÿ +
√
y + yẏ = u2

a. Introduce states x1 = y, x2 = ẏ and give the state space representation
of the system.

b. Find all stationary points (equilibria) (x01, x
0
2, u

0) of the system parametrized
in u0.

c. Linearize the system around the stationary point corresponding to
u0 = 1.

4.8 The following differential equations describe the dynamics of the epi-
demiological model denoted the SIS-model

dS

dt
=− βIS + γI

dI

dt
=βIS − γI

where S(t) is the fraction of susceptible people and I(t) is the fraction
of infected people, at time t ≥ 0. Furthermore, β > 0 and γ > 0 are
positive constant parameters and the initial state is given by S(0) = 0.8
and I(0) = 0.2.

a. Show that S(t) + I(t) = 1 for all times t ≥ 0.

b. Find the stationary points of the SIS-model, denoted
(

S0, I0
)

.

c. Linearize the system around the stationary point(s).
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5. Stability of linear systems, and

pharmacokinetics

5.1 Consider the system

G(s) =
1

s2 + 4s+ 3

a. Calculate the poles of the system. Is the system stable?

b. Calculate the impulse response by hand and plot it in MATLAB.

c. Calculate the step response by hand and plot it in MATLAB

5.2 Determine the stability of the systems below. Compare their impulse
responses using matlab.

a.
dx

dt
=









−1 0

1 −2







x+









1

0







u

y =


 0 1


x

b.
dx

dt
=









1 0

1 2








x+









1

0








u

y =


 0 1


x

c.
dx

dt
=









0 −1

1 0







x+









1

0







u

y =


 0 1


x

5.3 Assume that the system

G(s) =
0.01(1 + 10s)

(1 + s)(1 + 0.1s)

is subject to the input u(t) = sin 3t, −∞ < t < ∞

a. Determine the output y(t).

b. The Bode plot of the system is shown in figure 5.1. Determine the
output y(t) by using the Bode plot instead.

5.4 Consider the linearization of the SIS-model around the two stationary
points. Determine for which γ and β each system is marginally stable,
i.e., has poles with real-value less than or equal to zero. Can they both
be stable at the same time?

5.5 Determine the dissolution rate q̇ of a drug with diffusion properties
d = 0.1, A = 1, D = 0.5, Cs = 0.2 and Cb = 1 using the Noyes-
Whitney equation.

14



Chapter 5. Stability of linear systems, and pharmacokinetics
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Figure 5.1 The Bode plot in assignment 5.3.

5.6 In plasma, the half-life of a penicillin solution of 300 units/ml is 8 days.
Assume the drug exhibits linear pharmacokinetics as it is eliminated
from plasma, i.e., the concentration C(t) is governed by the dynamics
Ċ = −kC, where k is some constant.

a. Are the dynamics stable?

b. What will the concentration in plasma be in 7 days?

c. Plot the concentration over time.

d. How long will it take for the concentration to drop to 40% of the initial
concentration?

e. When stored, the half-life is different from that in plasma. Consider a
penicillin solution that has an initial potency of 90 mg/ml. After 25
days in a cold room, the concentration is found to be 80 mg/ml. What
is the half-life of the drug during these storage conditions?

5.7 A new drug targeting hepatatis has been developed. The drug is ad-
ministered orally and is believed to exhibit linear pharmacokinetics
including gut absorption.
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Chapter 5. Stability of linear systems, and pharmacokinetics

a. In Table 5.1, the parameters for the pharmakokinetics are given. Draw
a 3-compartment model for the route of the drug, including absorption
and elimination. The compartments to be used are the gut, liver, and
the body. The body represent a lumped compartment for the extra-
and intracellular fluid of the body excluding the liver and gut.

Table 5.1 Parameters for drug model in Problem 5.7

Parameter Value Description

VG 0.1 Distribution volume Gut [l]

VB 42 Distribution volume Body [l]

VL 0.27 Distribution volume Liver [l]

kGB 0.1 Kinetic coefficient Gut-to-blood [min−1]

kBL 4·10−3 Kinetic coefficient blood-to-liver [min−1]

kLB 1·10−3 Kinetic coefficient liver-to-blood [min−1]

ke,G 0.02 Elimination constant, gut [min−1]

ke,B 3·10−6 Elimination constant, blood [min−1]

ke,L 8·10−6 Elimination constant, liver [min−1]

b. Set up a state-space representation of the model with the drug concen-
tration in the liver as output using the parameter notation in Table 5.1.

c. Simulate a 500 mg dose, assuming it takes 5 minutes to dissolve at a
constant rate (100 mg/min), using lsim for a total duration of 168
hours.

d. Add more doses with a 24 hour interval, i.e., a new pill every 24:th
hour. The liver concentration will oscillate quite a lot with almost a
2-fold ratio between the highest and the lowest concentrations. Could
you suggest some alternative dosing scheme to keep the concentration
at a more even level, however, at the same mean concentration value?

e. How large should a constant intravenuous dose be, injected in the
body compartment, to achieve a steady-state liver concentration of 112
mg/dl?

In the final sub-problem you can use the static gain of a system. The
static gain is the limit limt→∞ y(t) when the input is a step. For asymp-
totic stable systems the static gain is simply given by G(0). That is

lim
t→∞

y(t) = G(0)

For the interested, a motivation of this results follows, feel free to skip
this.

The final value theorem is used to derive this result. We know that
L(ẏ(t)) = sY (s)− y(0). Thus

lim
s→0

L(ẏ(t)) = lim
s→0

∫ ∞

0
ẏ(t)e−st dt = lim

s→0
[sY (s)− y(0)]
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Chapter 5. Stability of linear systems, and pharmacokinetics

However, if the system is asymptotic stable, the integral exists and we
can move the limit insidez

lim
s→0

∫ ∞

0
ẏ(t)e−st dt =

∫ ∞

0
lim
s→0

ẏ(t)e−st dt = y(∞)− y(0).

Thus, y(∞) = lims→0 sY (s) = lims→0 sG(S)U(s). In particular, when
u(t) is as step function, we have that U(s) = 1

s . Then

y(∞) = lim
s→0

sG(s)
1

s
= G(0).
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6. Feedback in linear systems, and tracer

kinetics

6.1 Assume that the amount of substrate y inside a cell is described by the
differential equation

ẏ(t) + 0.01y(t) = 0.01u(t)

where u is the inflow of the substrate to the cell.

a. Determine the transfer function from u to y.

b. There is a regulatory circuit within the cell which regulates the sub-
strate content y via changing the intake, i.e., u. It does this by com-
paring the current value of y to a reference value r and scaling this
difference with a constant K, as follows

u = K(r − y).

Draw the block-diagram of this feedback circuit.

c. Determine the transfer function of the closed-loop system.

d. Determine the values of K for which the closed-loop system is stable.

e. Given K = 10, determine the static gain of the closed-loop system.
What does this value tell you?

6.2
Nyquist Criteria: In this course we will learn how to use the Nyquist
Criteria for stable systems. The Nyquist Criteria relies on the plot of
the open loop transfer function G(iω) in the complex plane. This plot
is called the Nyquist curve. For real systems, we have that G(−iω) =
−G(iω). Thus the Nyquist is symmetric around the real axis.

The closed loop system using simple feedback (K = 1 in Fig. 6.4) is
unstable if and only if the Nyquist curve encircles the point −1.

What does that mean? Imagine that the Nyquist plot is a rubber band.
If you can contract the rubber band to the origin without getting stuck
at a nail at −1, then the curve does not encircle −1. If the rubber
band does get stuck, the curve encircles −1. If the open loop have an
integrator the curve will not be closed. Then you can close it in the
right half plane.

A perhaps simpler version is to only plot the Nyquist curve for posi-
tive frequencies ω. Then we can instead state the Nyquist Criteria the
following way. The closed loop system is stable if the point −1 lies to
the left as we follow the Nyquist curve from ω = 0 to ω = ∞. For all
system we study we will have G(i∞) = 0.

For some examples see Fig. 6.1.
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Chapter 6. Feedback in linear systems, and tracer kinetics
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Figure 6.1 Nyquist plot for stable open loop systems. The two upper plots give
stable closed loop system while the two lower plots give unstable closed loop system.
The arrows indicates increasing ω

a. Repetition of complex numbers: Recall that a complex number z can
be written on polar form, z = Aejφ. A is the amplitude and φ is the
argument. What happens in the complex plane if φ is changed to φ+
90◦?

b. What is the amplitude- and phase-margin of the system with Nyquist
plot as in Fig. 6.2? The system is stable.

Hint: The phase-margin is the maximum phase-delay the system can
withstand and still be stable. A phase-delay of φ can be represented as
multiplication by e−jφ.

6.3

a. Consider simple output feedback, u = K(r− y), for a stable system G.
The Nyquist plot of the open-loop system can be seen in6.3. Determine
the largest K such that the closed-loop system is stable.

b. Draw a block diagram of the closed loop in the previous sub problem.

6.4 Given infusion u, the tracer concentration y is given by

Y (s) =
e−2s

(1 + 10s)2
U(s)

where e−2s models a time delay.
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Figure 6.2 Nyquist plot for the system in problem 6.2.
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Figure 6.3 Nyquist plot of the system for problem 6.3a

a. Write down a state space representation of the system from control
input u to output y.

b. If a proportional controller is used, i.e., u = Ky, to regulate the tracer
concentration, approximately how large may the gain constant K be-
come before the system becomes unstable?

6.5 Consider Problem 6.1. Determine K such that the closed-loop system
obtains the characteristic polynomial

s+ 0.1.
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Σ
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−1

Figure 6.4 Block diagram of process G in negative feedback with controller K

What does this imply for the pole(s) of the closed-loop system? Instead,
determineK such that the closed-loop system obtains the characteristic
polynomial

s+ 1.

Compare the behavior of the two closed-loop systems when the refer-
ence is a step normalized by the static gain of the given closed-loop
system. Which system is faster at tracking the reference? Relate this
to the poles.

6.6 Consider the block diagram in Figure 6.4. Consider the process

G(s) =
(s+ 10)(s + 11)

s(s+ 1)(s + 2)

to be controlled by a controller K as in which values of K is the closed-
loop system stable?

6.7 The tracer concentration y given infusion u is governed by

Y (s) =
5.3

2.8 + s
U(s).

What will the concentration be as time goes to infinity when the infu-
sion is at constant rate u0?
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7. Metabolism, glucose and insulin kinetics

7.1 Assume that your intake of food for one day is 3000 kcal. 2241 kcal are
consumed through thermogenesis and energy expenditure at rest. How
long can you run if it requires 11.3 kcal/min at a pace of 0.17 km/min
without lowering your stored energy?

7.2 Digestion Modeling: Consider the digestion model in the Padova sim-
ulation model:

q̇sto1(t) = −kgri · qsto1(t) + u(t)

q̇sto2(t) = kgri · qsto1(t)− kempt · qsto2(t)
q̇gut(t) = −kabs · qgut(t) + kempt · qsto2(t)

Ra(t) =
kabs
V

· qgut(t)

where u(t) is the amount of ingested carbohydrates, qsto1 is the solid
stomach compartment, and qsto2 represents the liquid phase. Further-
more, qgut is the glucose mass in the intestine and Ra(t) is the appear-
ance rate of glucose in the blood. The parameters are: kgri the rate
of grinding, kempt the rate constant of gastric emptying, kabs the rate
constant of intestinal absorption and V the distribution volume of the
blood. They are all positive and constant.

a. The model parameters take different values for different types of meals.
Which parameters would you expect to change between for example
cooked potatos and potato mash, and how?

b. Can the system become unstable with positive parameter values?

Σ
r e u y

K G

−1

c. Consider the parameter values kgri = kempt = kabs = 1 and V = 1.
You will now analyze the behavior of the closed-loop above where r is
a reference signal and e = r − y is the error signal. K is a dynamic
controller to be designed and G is the system from u to y stated above.
We will design K to be a PID-controller, where P stands for propor-
tional, I stands for integral and D stand for derivative. The controller
calculates u(t) based on these three different terms

uP (t) = Ke(t), uI(t) = Ki

∫ t

0
e(τ)dτ and uD(t) = Kdė

→ u(t) = uP + uI + uD

where parameters K, Ki and Kd can be tuned. The proportional part
uP gives a control signal that is directly proportional to e(t). The inte-
gral term uI gives an accumulated response to e(t) that is persistent.
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Figure 7.1 Interstitial and Plasma Glucose compartment kinetics.

Finally, the derivative term uD gives a contribution that is acting on
the direction of e(t), thereby trying to foresee the development and act
in advance. The Laplace transform of the PID-controller is given by

K(s) = K +Ki
1

s
+Kds.

Given the parameter values of the controller in the table below, write
down the closed-loop systems and determine their static gains. What do
the static gains imply for the impact of a reference signal r as t → ∞?

Case Parameter K Ki Kd

P 3.6 0 0

PI 3.2 1.7 0

PID 4.3 3.5 1.3

7.3 Subcutaneous Delay: Consider the compartment model in Fig. 7.1.
Write down the balance equation governing the interstitial glucose
value, GISF . Assume that GP (t) = sin(ωt). Determine what the am-
plitude of GISF becomes for ω = 1 and ω = 100, when k3 = 10. Plot
the bode diagram of the system from GP to GISF . What can you say
about the permeability of signals GP with different ω?

7.4 (Optional) PID-demo. In handin 3 you will use a PID controller on
an advanced system. Here you get to chance to get some familiarity on
an easier problem.

A PID controller in the time domain is given by

u = Ke+Ki

∫

e(t)dt +Kd
de

dt

Or in the case of no I part

u = Ke+ u0 +Kd
de

dt
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Chapter 7. Metabolism, glucose and insulin kinetics

Download the file pid test.mdl from the course web page. To turn on
the I-part you use the I or u0 switch. To turn on the D-part set Kd

to nonzero. Play around with the model, you can for example consider
the following

• How does the static error for a P controller depend on the gain
K?

• Can you get the stationarity for a PI-controller faster by increasing
Ki. What happens if you choose Ki to large?

• Can you tune a PID controller so that there is no overshoot?
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Figure 8.1 The serial Hill model

8. State feedback, biomechanics and

posture control

8.1

m

k

c

y(t)Viscoelastic model In the right figure, a
mass m is attached to a wall with a spring
and a damper. The spring has a spring con-
stant k and the damper has a damping con-
stant c. It is assumed that k > c2/4m. We
denote the translation of the mass from its
equilibrium position by y. The force equation gives

mÿ + cẏ + ky = 0

a. Introduce the states x1 = y and x2 = ẏ and write down the state space
representation of the system.

b. Determine the poles of the system in terms of m, k and c. Can the poles
end up in the right half plane, i.e., can the system become unstable?

8.2 In this exercie we consider the serial Hill model, see Fig. 8.1.

a. Can you give a physiological interpreation of the Serial and parllel
element?

b. Consider Contraction of the muscle. The muscle is contracted 1 l.u
and is contracting at a speed of 0.1 l.u/s. The muscle is generating a
contraction force of Fc = 3 f.u. What is the total force over the parallel
element? Let KP = 2 and η = 0.3.

c. Asuming isometric muscle contraction, the transfer function from con-
traction force Fc to force ofer the element F is given by

F (s) =
KS

ηs+ (KP +KS)
Fc(s).

Plot the step response of the system, for KS = 3, KP = 2 and η = 0.3.
Is the final value of F (t) smaller or bigger than Fc(t)?
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Chapter 8. State feedback, biomechanics and posture control

8.3 Consider the following simplified model for digestion

q̇int = −kabsqint + C(t)

q̇blo = 0.9 · kabsqint − kdecqblo

y =
1

V
qblo

where qint [g] is the glucose mass in the stomach and intestines while
qblo [g] is the glucose mass in plasma. The input C(t) [g/min] is the
rate of ingested carbohydrates. Parameter kabs [min−1] is the intestinal
absorption rate while kdec [min−1] is the decay-rate of the glucose mass
in the blood (due to energy demand from the cells of the body). The
measurement y [g/l] is the glucose concentration in plasma, where V [l]
is the distribution volume of plasma. The parameter values are kabs =
10, kdec = 5 and V = 5.

a. Determine the transfer function of the system from C to y as well as
its pole(s).

b. What is the static gain of the system? Explain what it means in your
own words.

c. We will now use the measurement, i.e., y, in feedback. Consider the
control law C(t) = K(r − y) where r is the reference. That is, we
determine the carbohydrate intake based on the deviation of the glucose
concentration in plasma from the reference value. What are the pole(s)
of the closed-loop system from r to y given K?

d. Assume instead that we are able to directly measure both qint and qblo.
Consider the control law C(t) = r− l1qint− l2qblo. What are the pole(s)
of the closed-loop system from r to y given l1 and l2?

e. Assume that you are free to choose K, l1 and l2. Given which of the two
control approaches do you have more flexibility in placing the poles?

8.4 Consider the block-diagram in Fig. 8.2. This is an illustration of the
state-feedback scheme. Determine a control law u = lrr − Lx for

a.
dx

dt
=









−0.5 0

1 0







x+









3

0







u

y =


 0 1


x

such that the poles of the closed loop system are placed in −4± 4i and
the stationary gain, from reference to output, is 1.

b.
dx

dt
=









−1 0

0 −2








x+









1

2








u

y =


 1 1


x

such that the poles of the closed loop system are placed in −4 and the
stationary gain is 1.
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Figure 8.2 The system in Problem 8.4.

8.5 When walking, the body is kept in upright position by a regulatory
system. This balancing of the body can be simplified to the problem of
controlling an inverted pendulum positioned on a cart, by moving the
cart. In Fig. 8.3, a schematic of this inverted pendulum is given.

ϕ 

l   

z     

Figure 8.3 Inverted pendulum in exercise 8.5.

The control signal is the velocity of the cart v [m/s]. The position of the
cart z [m] and the angle of the pendulum ϕ are measured. The problem
is to decide upon a feedback controller wich stabilizes the pendulum
in its upright position as well as moves the cart towards some wanted
position. If the model for this inverted pendulum is linearized it can be
written as

dx1
dt

= ω0x2 + au

dx2
dt

= ω0x1

dx3
dt

= bu

where the state variables

x1 = kϕ
dϕ

dt
x2 = ω0kϕϕ

x3 = kzz

are used. They are all in unit [V]. The scalars kϕ, kv and kz are cali-
bration constants. The scalars a, b and ω0 are given by

a =
ω2
0kϕ
gkv

b =
kz
kv

ω2
0 =

g

ℓ
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Chapter 8. State feedback, biomechanics and posture control

where g is the gravitational acceleration and ℓ the length of the pen-
dulum.

Assume that we can measure the given states. Determine a state feed-
back regulator which gives a closed loop system with poles in −α, and

−ω
(

ζ ± i
√

1− ζ2
)

.
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9. The Hodgkin-Huxley model

9.1 Consider the Nernst equation. Given the ion concentration in the table
below, calculate the equilibrium potentials of Na+, K+ and Cl− at
25◦C.

Ion Inner conc. [µM] External conc. [µM]

Na+ 12 145

K+ 155 4

Cl− 4.2 123

How does the potentials change if the temperature is lowered 20 de-
grees?

9.2 Below is the Goldman Equation, which describes the membrane poten-
tial V at certain ion concentrations and permeabilities.

V =
RT

F
ln

(

PK [K]2 + PNa[Na]2 + PCl[Cl]1
PK [K]1 + PNa[Na]1 + PCl[Cl]2

)

Pi - permeability for ion [i], 1 - inner concentration and 2 - external
(outer) concentration.

a. How would you describe permeability?

b. Assume some fixed and bounded permeability for each ion. If the per-
meability of sodium (Na) would increase, how would this change the
membrane potential? You can assume that the ion concentrations are
the same as in the previous exercise.

9.3 In the Hodgkin and Huxley model, the dynamics of the gating variables
m, n and h are given by:

dm

dt
= αm (V ) (1−m)− βm (V )m

dh

dt
= αh (V ) (1− h)− βh (V ) h

dn

dt
= αn (V ) (1− n)− βn (V )n

where the rate functions are, unit [1/ms]:

αm (V ) = 0.1 (V + 45) / (1− exp (− (V + 45) /10))

βm (V ) = 4exp (− (V + 70) /18)

αh (V ) = 0.07exp (− (V + 70) /20)

βh (V ) = 1/ (1 + exp (− (V + 40) /10))

αn (V ) = 0.01 (V + 60) / (1− exp (− (V + 60) /10))

βn (V ) = 0.125exp (− (V + 70) /80)
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Chapter 9. The Hodgkin-Huxley model

a. Plot αm (V ), βm (V ), αh (V ), βh (V ), αn (V ) and βn (V ) for values of
V between -90 and 70 [mV].

b. Give approximate expressions for dm
dt ,

dh
dt and dn

dt when m,h, n is close
to 0.5 and V is close to −20.

c. What do the gating variables correspond to physiologically?

9.4 Consider the following simplified model for the membrane potential:

Cm
dV

dt
= −gL (V − EL) + Iext

It only takes into account the leakage and external currents. Solve the
differential equation in MATLAB when the external current starts at 0
and increases by 5 [µA/cm2], as a step, every 100 ms for 500 ms. As-
sume that the initial membrane potential is the equilibrium potential
of leakage EL = −59.387 [mV], that gL = 0.3 [mS/cm2] and the mem-
brane capacitance is Cm = 1[µF/cm2]. What happens? Compare it to
the simulated behavior of the full Hodgkin and Huxley model shown
on the Lecture. Can you make it create an action potential?

9.5 The Hodgkin and Huxley model is derived upon the idea of seeing the
membrane of the neuron as an electrical circuit, see Fig. 9.1. We will
now simulate the behavior of its different electrical components.

Cm

gNa gK gL

+

+

+ +

−
− −

−

V

ENa EK
EL

In

Out

Figure 9.1 Electrical circuit of the HH-model

a. Isolate the capacitance Cm and assume it is fed by a current i(t). The
voltage V (t) across the capacitance is then governed by

Cm
dV

dt
= i(t).

Given Cm = 1, simulate the potential when i(t) = sin(2t). Describe
what happens to the voltage during the course of one period of the
current.

b. Isolate the conductance gL and potential EL. Assume there is a voltage
V across them. The current that runs through the conductance is then
given by

iL = −gL(V − EL).

Assume that gL = 0.3 and EL = −59. Determine the current iL for
V ∈ [−90, 70]. What happens to the direction of the current over this
voltage span?
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Chapter 9. The Hodgkin-Huxley model

c. The currents through the conductances for Na and K depend in a non-
linear fashion on the voltage V. However, if we denote the currents
iNa, iK and iL we can now determine the current that is fed to the
capacitance by Kirchoff’s law, i.e., i(t) = iNa+ iK+ iL. In the electrical
circuit in Fig. 9.1 we have excluded the external current. However it
can be included as a current source in parallel with the capacitance.
Write down the dynamics for the full circuit.
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10. Blood flow control and heart rate

dynamics

10.1 What is the cardiac output and index when the stroke volume is 0.05
l, the heart rate is 60 bpm and the body surface area is 1.6 m2?

10.2 Flow control is important in many applications. In e.g. a hemodialysis
machine it is very important to keep a steady and constant flow through
the filters to achieve optimal filtration. Pump-to-flow dynamics is given
by the pump characterstics together with the piping and filter system
topology. The following transfer function relationship is assumed to
hold between the flow and the control input, i.e., the pump rate:

G(s) =
e−9s

(1 + 20s)2

If a proportional controller is used, i.e., u = Ky, approximately how
large may the gain constant K become before the system becomes
unstable?

10.3 Arterial 4-element Windkessel Model: The model is given by the fol-
lowing set of equations:

dp

dt
= − 1

RC
p+

1

C
q̇i

dq̇L
dt

= −Ra

L
q̇L +

Ra

L
q̇i

pa = p−Raq̇L +Raq̇i

a. Describe what the different elements of the model represents.

b. Give the transfer function.

c. Calculate the static gain.

d. Calculate the poles of the system.

e. Can the system become unstable given positive parameter values?

10.4 Consider the Van der Pol (VDP) model

ÿ − ν(1− y2)ẏ + y = 0

where ν is a positive constant. It can be used as a simple model for the
electrophysical behavior of the heart. Then, y is the electrical activity
of the heart.

a. Compare this model to the viscoelastic model in exercise 8.1. What is
the main difference?
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Chapter 10. Blood flow control and heart rate dynamics

b. Define c(y) = −ν(1 − y2) as the function multiplied by ẏ. Plot this
function for ν = 1 over the interval −2 ≤ y ≤ 2. This illustrates
the nonlinear damping coefficients dependece on y. Can it take both
positive and negative values?

c. Simulate the system

ÿ + cẏ + y = 0

for c = 0.1 and c = −0.1, given the initial condition y(0) = −0.1, ẏ(0) =
0.1. What is the difference in behavior with negative and positive c?

d. Choose x1 = y and x2 = ẏ and write the VDP model on state space
form.

e. Simulate y for ν = 0.1 and ν = 10 over 200 time units and initial
condition y(0) = −0.1, ẏ(0) = 0.1. What is the difference in behavior?

f. Consider ν = 10. Initialize the system at y(0) = 3, ẏ(0) = 0.1 and
simulate. What is the difference in behavior compared to the previous
subproblem?

g. Linearize the system around its stationary point.

h. Is the linearized system stable?
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11. State estimation and System

Identification

11.1 In Lecture 9, a model of the ventilation system based on an electri-
cal analogy may be found. Here, the model is instead derived from
a mechanical viewpoint. The respiratory tract (nasal cavity, pharynx,
trachea, bronchi) and the lungs (the total collection of alveolars) can
be thought of as a tube connected to a (single) flexible membrane of
volume V . Considering the gas flow to be both incompressible and
isotermic, we know from fluid mechanics that the (laminar) flow rate
V̇ in a tube is proportional to the pressure difference between the pipe
ends:

RV̇ = (pext − plung)

where R is a constant representing flow resistance, pext is the external
pressure and plung is the average lung pressure.

The force balance across the lung cavity with compliance C gives:

plung = V/C

a. Let V = V 0 + ∆V and pext = p0ext + ∆pext. We can now write the
system as

R∆̇V = ∆pext −
∆V

C

Find the transfer function from ∆pext to ∆V .

b. We are now to perform some experiments to try and derive values of
the constants R and C for a specific set of lungs. Assume that we are
able to measure the volume of the lungs V (t) and are able to change
the external pressure pext.

Our first test is to increase the external pressure by a unit step. The
result from the experiment is given below, where we have ploted ∆V .
Determine C from this plot.
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c. For our second test we used ∆pext(t) = sin(t) and got the response
below. Can you determine R (given that you know the value of C
from the previous subproblem) from this response? Once again, ∆V is
ploted.
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sinusoidal input

11.2 You belive that there exists a relationship on the form y = a + bx
between the concentration of a biomarker x and the amount of can-
cer tumor cells. The following dimensionless data points (x, y) were
acquired from an experiment:
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x y

1 3

3 5

5 6

7 7

a. Unsurprisingly, it seems to be impossible to chose a and b so that
every data points fits the experiment perfectly. You instead make the
assumption that the relationship is on the form yi = a+ bxi + ei. You
decide that you want to minimize the sum of the squares of the errors.
Show that

∑

i e
2
i = (Y − Φθ)T (Y −Φθ), where

Y =











y1

y2

y3

y4











, Φ =











1 x1

1 x2

1 x3

1 x4











, θ =

[

a

b

]

.

b. It can be shown that the error is minimized for θ =
(

ΦTΦ
)−1

ΦTY. Cal-
culate the best estimate for a and b (this is the least squares method.)

c. Check your estimate in MATLAB by plotting the points and the poly-
nomial obtained.

d. The true parameter values are (a, b) = (2.7, 0.6). Plot the true function
y(x) and compare it to your fit.

e. We obtained information that the data point (x, y) = (5, 6) is invalid
due to problems in the experimental setup. How does the estimates
change when this data point is no longer valid?

11.3

a. Describe a method for deciding the transfer function of a first order
system G(s) = β

s+α based on its impulse response.

b. Consider the following model,

q̇(t) = −kq(t) + u(t)

y(t) = q(t)/V

where u(t) = Dδ(t) is a bolus injection at time t = 0 of a drug and y(t)
is the measured drug concentration. V is the volume of the compart-
ment and k is the rate constant. Are the parameters k and V identifiable
(assuming you can identify the transfer function of the system)?

c. Consider the following two compartment model where a bolus injection
is given at time zero and where the measured variable is the concen-
tration of drug in plasma in compartment 1. The equations describing
the model are,

q̇1(t) = −(k01 + k21)q1(t) + u(t)

q̇2(t) = k21q1(t)

y(t) =
q1(t)

V1
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where q1(0) = q2(0) = 0 and V1 is the volume in compartment 1. Are
you able to determine the three unknown parameters k01, k21 and V1

(assuming you can determine the transfer function of the system?).
Compare with part a of this exercise.

11.4 Consider the data set of paired data in the table below.

u y

1 6

2 17

3 34

4 57

Adopt the following model

y = a+ bu+ cu2

and

a. estimate the parameters a, b and c by the least squares method.

b. Add noise to some of the measurements y by MATLABs function randn.
How does this affect the estimates of the parameters?

11.5 Consider the simplified model for digestion studied earlier.

q̇int =− qint + u(t)

q̇blo =0.9qint − 2qblo

y =qblo

where qint is the glucose in the stomach and intestines and qblo is the
glucose mas in plasma. The input u(t) is the rate of ingested carbohy-
drates.

a. take x1 = qint and x2 = qblo. Write the system on the standard state
space form,

ẋ =Ax+Bu

y =Cx.

b. You have access to the input u(t) and the output y(t). However, you
want to estimate the states as well. Someone suggests the following
estimate x̄ of the states

˙̄x = Ax̄+Bu+ L(y − Cx̄).

Let x̃ denote the error of the estimator, ie x̃ = x − x̄. Derive the
dynamics for x̃. That is, find ˙̃x.
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c. Let L = [0, l2]
T . For which l2 does the error x̃ go to zero?

11.6 Consider the following scenario: A patient arrives to the hospital with
symptoms of methanol poisoning. The person is also heavily intoxicated
by ethanol and cannot give any answer to how much, or when, he
consumed the ethanol/methanol. As a basis for determining the optimal
treatment decision, the doctor would like a prognosis of the level of
the toxic metabolite formic acid as well as the methanol concentration.
Serum samples are collected once every hour to assess the level of formic
acid. A simplified model of the metabolism of methanol and formic acid
is provided below.

All methanol is believed to already have been absorbed from the gut,
and is modeled by a single compartment with a half-life of 17 hours and
a distribution volume VD of 50 liter. The formic acid is believed to be
formed in the liver with a rate proportional to the metanol content with
a rate constant rL = 0.7mmol · g−1 · h−1 (This is without expending
any metanol). The formic acid is distributed over two compartments,
representing blood and liver, with exchange coefficients kLB = 0.25h−1

(from liver to blood) and kBL = 0.2h−1 (from blood to liver), and is
eliminated from the liver with an elimination rate of ke = 0.15h−1.
The compartment volumes for the formic acid are VL = 1.2 l (liver)
and VB = 5.7 l (blood). Methanol has a density of 0.798 kg/l and a
molar weight of 32 g/mol.

a. Derive a state-space model of the system, with the formic acid blood
concentration as the output variable y, and methanol content as state
x1 [g], liver content of formic acid as x2 [mmol] and blood content of
formic acid as x3 [mmol].

b. Now, estimates of the methanol and formic acid levels may be given
using the blood formic acid concentration samples and an observer. Let
the poles of the observer polynomial be at −0.6,−0.8,−1.0. Formulate
the analytical expression that needs to be solved in order to calculate
the observer gain. Use place(X,Y, p), with X = AT and Y = CT and
p representing the poles, to derive the numerical result.

c. Use this observer and the formic acid concentration samples (Y ) in the
file (Metanoldata.mat) to estimate the states; x̂k+1|k. Initial measure-
ments of the blood methanol and formic acid concentrations at patient
arrival are 11.3 mmol/l and 17 mmol/l. You may assume the the liver
content of formic acid to be the same as that of blood upon arrival.
Use this to set up an initial state x̂0 of your state estimation.

d. Normally formic acid assays are not available, but regular methanol
test may be considered. Is it possible to use this biomarker instead to
estimate all the state variables?

To decide if it is possible to estimate all the states of a system, the
observability matrix can be used. For a system of dimension n the
observability matrix is given by
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O =

















C

CA

CA2

...

CAN−1

















and the system is observable if the observability matrix is full rank.
Observability essentially means that it is possible to estimate all the
states.
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Solutions to Chapter 1. Introduction to

computation and simulation in MATLAB

The exercises in this chapter are to familiarize yourself with MATLAB.
The mathematics should not be new to you. However, if you are unsure
about it, please go back to your Linear algebra and Analysis books and
review the material needed.

1.1

a.

det(A) = a · d− b · c,

A−1 =
1

ad− bc

[

d −b

−c a

]

Eigenvalues λ are the solutions to det(λI −A) = 0.

b. Use the help function and MathWorks webpage.

1.2

a. Normally * means matrix multiplication, and C*C gives the matrix
multiplication of C · C. When you put a dot before an operator, like
.*, you get an element wise operator. So C.*C gives element wise
multiplication.

b. No, the dimensions are not compatible.

c. The answer will be 2.

1.3 a. Create an anonymous function using the function handle. This function
is only saved in your workspace until you close MATLAB (or clear you
workspace by the clear all command). In case you would like to
save your function as a file in your current folder (from where you can
reach it at another time), use a function m-file (go to new → function).

y = @(x) exp(−x/2)*cos(2*pi*x);

figure

fplot(y,[−6 3])

title('My fancy plot')

xlabel('x')

ylabel('y')

figure is a command which is useful when you want to create sev-
eral plots in the same script. Use the help-command whenever you
need information about one of MATLABs buildt-in functions. In this
case you would write help figure in the command window and the
description of the function figure should appear.
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b.
axis([−4.5 −1 −10 10])

c. % Rewrite y to be accepted by quad/integral (read in the

% description of quad/integral to understand why).

% Add a "." before the multiplication sign.

y = @(x) exp(−x/2).*cos(2*pi*x);

integral(y,−4.5,−1)
% or

quad(y,−4.5,−1)

d. f = @(x) xˆ3+2*x−1; solution = fsolve(f,0)

The answer is 0.4534. Write format long in the command window
(then use the fsolve command) to get more decimals in the answer.
Due to it being numerically calculated f(0.4534) is approximately zero.

e. f = @(X) X.*X.

f. Recall that we can extract elements from a matrix (or vector) by using
v(3,1). The problem can be solved by the following: f = @(v) [v(3,1), v(2,1), v(1,1)]'.
Or using that the input only has one dimension: f = @(v) [v(3), v(2), v(1)]'.

1.4 Go to new → function. A file with a function-shell will appear. The
function shell looks like:

function [ output args ] = untitled( input args )

%UNTITLED Summary of this function goes here

% Detailed explanation goes here

end

Replace untitled with the name of your function, input args with
the input your function needs and output args with the output your
function will give. Between the function-row and the end you should
write the code for the function.

For the particular function of this exercise, it could look as follows

function sumOfDiag = sumOfDiagonal(A)

[n,m] = size(A);

if n 6= m

error('A is not a square matrix')

end

sumOfDiag = sum(diag(A));

end

Where 6= is written as ˜= in MATLAB. Save your function as an m-file
in your current folder, by the name of your function. In this case it
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would be ”sumOfDiagonal.m”. Now you can use your function directly
from the command window or from a script which is saved in the same
folder as your function.

1.5 a. x(t) = ect.

b. Use the code given in the problem text and what you’ve learnt in the
previous exercises on how to plot.

c. The ODEs can be written together on matrix form as follows

(

ẋ1

ẋ2

)

=

(

x2

3x1 − 7x2

)

=

(

0 1

3 −7

)(

x1

x2

)

.

Define the vector x =

(

x1

x2

)

. Then, define f as the following function

f(t,x) = f

(

t,

(

x1

x2

))

=

(

ẋ1

ẋ2

)

.

Hence,

f(t,x) =

(

x2

3x1 − 7x2

)

=

(

0 1

3 −7

)(

x1

x2

)

.

In MATLAB, this can be written as

f = @(t,x) [x(2); 3*x(1)−7*x(2)];

Or by matrix multiplication

f = @(t,x) [0 1; 3 −7]*x;

To solve the differential equation write the following code

[T Y] = ode45(f,[0 5],[0 1]);

The first input to ode45 is the right part of the differential equation,
the second input is the time span of the solution while the third is the
initial condition of the differential equation. Y is a matrix with two
columns, the first column corresponds to x1(t) = y(t) and the second
column corresponds to x2(t) = ẏ(t). T is the times between 0 and 5 at
which ode45 has calculated x1 and x2. Use the following code to plot
y(t) over 0 ≤ t ≤ 5

plot(T,Y(:,1))

1.6 Dimensions of matrices being concatenated are not consistent.

Indicates that we are concatenating two vector of different size. The er-
ror lies in the first row of the matrix, where 5 −3 gives two entries to
the matrix. Instead you have to write 5−3 without the blank space.
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Error using .* Matrix dimensions must agree.The error message
indicates that the matrices have the wrong dimension. This is because
the code uses elementwise multiplication .* which should be replaced
by ordinary matrix multiplication *.
Error using @(x)x.^2-x Too many input arguments. indicates that
we are calling our function f with two many input arguments. This is
because the ode45 command requires that the function is a function
of two variables. t and x. We can fix the problem by defining f as
f = @(t,x) x.ˆ2−x.
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Solutions to Chapter 2. Biochemical

Reactions: equilibrium, steady state and

control

2.1

a. Conservation of mass. Assume that we start out with x(0) = 8 while
y(0) = 2 and z(0) = 0. Then, c = 10 and at every time instant, the
total concentration is always 10, i.e., the total mass (or concentration
more specifically in this case) is preserved.

b. The equilibrium is given by the point (x0, y0, z0) for which dx/dt =
dy/dt = dz/dt = 0. From dz/dt = k2y = 0 we get that y0 = 0.
Then from either of dx/dt = 0 or dy/dt = 0 we get that x0 = 0. Thus
z0 = c−x0−y0 = c and the equilibrium is given by (x0, y0, z0) = (0, 0, c).

c. Yes. The system can be simulated with the following code:

% v = [x,y,z]'; f = [dx/dt,dy/dt,dz/dt]';

% Parameters

k1 = 1;

km1 = 0.5;

k2 = 0.8;

% Initial conditions

x0 = 10;

y0 = 0;

z0 = 0;

% Right hand side of ODE

f = @(t,v) [−k1 km1 0; k1 −km1−k2 0 ; 0 k2 0]*v;

% Solve ODE

[T, sol] = ode45(f,[0 20], [x0,y0,z0])

% Plot solution

plot(T,sol)

legend('x','y','z')

title('System dynamics')

xlabel('time')

ylabel('Concentration')

d. The system reaches the equilibrium faster, around 8 time steps instead
of 14 as in the previous setting. As z reaches c = 10, k2 grows. That
means that the production of z is positively reinforced by the quantity
of z. This can be described as positive feedback. Plot k2(z) over z ∈
[0, 10] with fplot to see that it increases with z. The code below is
example code on how to simulate the system with the dynamic k2.

% v = [x,y,z]'; f = [dx/dt,dy/dt,dz/dt]';

% Parameters

k1 = 1;

km1 = 0.5;
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Figure 2.1 Simulated system dynamics in Problem 2.1. The equilibrium is reached
within 20 time steps.

k2 = @(z) 0.8*(1+10/(z−11)ˆ2);

% Initial conditions

x0 = 10;

y0 = 0;

z0 = 0;

% Right hand side of ODE

f = @(t,v) [−k1 km1 0; k1 −km1−k2(v(3)) 0 ; 0 k2(v(3)) 0]*v;

% Solve ODE

[T, sol] = ode45(f,[0 20], [x0,y0,z0])

% Plot solution

plot(T,sol)

legend('x','y','z')

title('System dynamics')

xlabel('time')

ylabel('Concentration')

2.2
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a. The balance equations for the enzymatic reaction are given by

ds/dt = −k1se+ k−1c

de/dt = −k1se+ (k−1 + k2)c

dc/dt = k1se− (k−1 + k2)c

dp/dt = k2c,

where s = [S], e = [E], c = [C] and p = [P ]. A matlab script may look
as follows:

% Simulation of the substrate, enzyme

% and product concentrations in a MM example

% ds/dt = −k 1 *(se) + k {−1}*c
% de/dt = −k 1 *(se) + (k {−1} + k 2)*c

% dc/dt = k 1 *(se) − (k {−1} + k 2)*c

% dp/dt = k 2 c

%−−−−−−−−−−−−−−−−−−−
% Initial conditions

s0 = 0.15; % mmol/L

e0 = 1e−2; % mmol/L

c0 = 0; % mmol/L

p0 = 0; % mmol/L

%−−−−−−−−−−−−−−−−−−−
% Parameters

k1 = 0.1;

k3 = 0.01; % k {−1}
k2= 0.02;

%−−−−−−−−−−−−−−−−−−−
% Run ode−solver simulation

% y = [S E C P]

dAll = @(t,y) [−k1*y(1)*y(2)+k3*y(3); ...

−k1*y(1)*y(2)+(k3+k2)*y(3); ...

k1*y(1)*y(2)−(k3+k2)*y(3); ...

k2*y(3)];

[t Y] = ode45(dAll,[0 10000],[s0 e0 c0 p0])

figure

[ax,h1,h2] = plotyy(t,[Y(:,1) Y(:,4)],t,[Y(:,2) Y(:,3)])

legend('Substrate','Product','Enzyme','Complex')

xlabel('time [s]')

ylabel(ax(1),'Substrate/Product Concentration [mmol/L]')

ylabel(ax(2),'Enzyme/Complex Concentration [mmol/L]')

title('Simulation of enzymatic reaction')

b. To derive the Michaelis Menten relation we make the following assump-
tions:

• Conservation of enzyme and complex: de/dt + dc/dt = 0, i.e.,
e(t) + c(t) = m, where m > 0 is some constant. From the initial
conditions we get that m = e(0) + c(0) = [E]0 + [C]0 = [E]0.

• Steady state conditions for enzyme and complex: de/dt = 0 and
dc/dt = 0.
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Now, dc/dt = 0 with e(t) = [E]0 − c(t) results in

k1s(t)([E]0 − c(t))− (k−1 + k2)c(t) = 0

c(t) =
k1[E]0s(t)

k−1 + k2 + k1s(t)
=

[E]0s(t)

(k−1 + k2)/k1 + s(t)
.

Note that dc/dt = −de/dt. Finally, dp/dt can now be written as

dp

dt
= k2c =

k2[E]0s(t)

(k−1 + k2)/k1 + s(t)
.

It is clearly on the form
Vmaxs

Km + s
,

with Vmax = k2 · [E]0 is the maximal reaction rate and Km = (k2 +
k−1)/k1.

c. Consider the maximum of dp/dt over s ∈ [0,∞). It takes its lowest
value for s = 0, i.e., dp/dt = 0 and since it is an increasing function its
maximal value is given by

lim
s→∞

dp

dt
= lim

s→∞

Vmaxs

Km + s
= lim

s→∞

Vmax

Km/s+ 1
= Vmax.

Hence, when there is an infinite amount of substrate, the reaction rate
is bounded by Vmax.

d. Doubling the enzymatic concentration [E]0 doubles the maximal pro-
duction rate since Vmax = k2 · [E]0.

2.3

a. The plot indicates that the relationship between the reaction rate and
the substrate concentration goes to saturation in a M-M-like behavior,
see Fig.2.2. Vmax and Km are estimated as shown in the plot.
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Figure 2.2 Graphical estimation of Vmax and KM
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b. Lineweaver-Burke plot: The Michaelis-Menten relationship between sub-
strate concentrations [S] states that:

v =
Vmax[S]

Km + [S]

Taking the inverse yields:

1

v
=

Km

Vmax

1

[S]
+

1

Vmax

Now, the parameters Km/Vmax and 1/Vmax for this linear relationship
may be estimated from the plot as seen in Fig. 2.3.
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Figure 2.3 Graphical estimation of Vmax and KM using the Lineweaver-Burk
plot.

2.4

a. Yes. As [I] is bounded we can perform the same analysis in the previous
subproblem.

b. d[P ]/dt goes to zero.

c. We recover the ordinary enzymatic reaction treated in a previous prob-
lem, i.e., without the inhibitor.

d. It binds to the enzyme needed for the enzymatic reaction and stores
it in the inactive form C2. Thus, as there is less enzyme, it will slow
down the process. If there is infinite amount of inhibitor, the reaction
rate tends to zero.
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models and simulation in Simulink

3.1 Compartment model:

x1, V1 x2, V2 x3, V3

k1

k
−1

k2

y v

3.2

a. x1, x2: mg. u, dx1/dt, dx2/dt: mg/(ms). k: 1/ms. y: mg/dl.

b. The balance equations are given by

dx1
dt

= −kx1 + u

dx2
dt

= kx1 − kx2

y = x2/1

c. The equilibrium is characterized by dx1

dt ,
dx2

dt = 0. From dx1

dt = 0 and
u = u0 we get that x01 = u0/k. Furthermore, from dx2/dt = 0 we
get that x02 = x01 = u0/k and thus y0 = x02 = u0/k. In summary, the
equilibrium point is given by (x1, x2, u, y)

0 = (u0/k, u0/k, u0, u0/k).

d.








ẋ1

ẋ2








=









−k 0

k −k

















x1

x2








+









1

0








u

y =


 0 1












x1

x2









3.3 % System state space matrices

A = [−1 0 ; 1 −1];
B = [1 ; 0];

C = [0 1];

D = []; % Empty matrix

% Construct the state space system

system = ss(A,B,C,D);

% Contruct the transfer function

G = tf(system)

% Simulate the system

T = 0:0.1:8;

u = ones(length(T),1);

lsim(system,u,T)
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The measured concentration tends to 1 mg/dl.

In the previous exercises of this chapter we treated linear systems. How-
ever, nonlinear phenomena is common in physiology (e.g., the enzyme
reactions treated in the previous chapter). The analysis of nonlinear
systems is more involved than that for linear systems. However, to
simulate the systems behavior is often a very useful tool, as we have
seen through the use of ode45. In this last part of the exercise, we will
instead use SIMULINK for simulation, which is a buildt in graphical
simulation tool in MATLAB.

3.4 -

3.5

a. The equilibria are characterized by dx/dt = x(b−px) = 0. Thus, x0 = 0
and x0 = b/p are the equilibria.

b. -

c. When starting at x(0) = 0.8 and x(0) = 0.1, the fraction of bacteria
reaches the equilibrium b/p = 0.5, i.e., this equilibrium is attracting the
dynamics from both above and below. When the dynamics are initiated
in x(0) = 0, it stays there, as is expected due to it being an equilibrium.

3.6 The Simulink model can be seen in Fig. 3.1.
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Integrator
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Figure 3.1 Simulink model for the Predator-Prey system

If α becomes large the bacteria outgrow the neuthrophiles and uncon-
trolled bacterial growth occurs.
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Solutions to Chapter 4. Linear systems and

linearization

4.1 Transfer function representation: Laplace transform the equation

L(...y + 3ÿ + 2ẏ + y) = L(u)

and denote Y (s) = L(y(t)) and U(s) = L(u(t)). This results in

(s3 + 3s2 + 2s + 1)Y (s) = U(s)

Y (s) =
1

s3 + 3s2 + 2s + 1
U(s)

and the transfer function, which we denote by G(s), is given by

G(s) =
1

s3 + 3s2 + 2s+ 1
.

The transfer function representation lives in the frequency domain with
variable s (unit e.g. rad/s or Hz).

State-space representation:

















ẋ1

ẋ2

ẋ3




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
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


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




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.

The state-space representation lives in the time domain with variable
t (unit e.g. s, min, hours).

The main difference between the two representations are the domains
they are described in, i.e., frequency and time.

4.2 After the Laplace transform, one obtains

sX = AX +BU

Y = CX +DU

Solve for X

(sI −A)X = BU

X = (sI −A)−1BU

This gives

Y = C(sI −A)−1BU +DU =
(

C(sI −A)−1B +D
)

U
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4.3 a. The transfer function is

G(s) = C(sI −A)−1B +D

= (−1 1 )

(

s+ 2 0

0 s+ 3

)−1( 5

2

)

+ 2

=
2s2 + 7s+ 1

s2 + 5s+ 6
.

From the transfer function it is easy to determine the differential equa-
tion

Y (s) = G(s)U(s)

(s2 + 5s+ 6)Y (s) = (2s2 + 7s + 1)U(s)

ÿ + 5ẏ + 6y = 2ü+ 7u̇+ u

The poles of the system are given by −2 and −3.

b. The transfer function is

G(s) = C(sI −A)−1B +D

= (−2 1 )

(

s+ 7 −2

15 s− 4

)−1( 3

8

)

=
2s+ 3

s2 + 3s+ 2
.

The differential equation becomes

Y (s) = G(s)U(s)

(s2 + 3s+ 2)Y (s) = (2s+ 3)U(s)

ÿ + 3ẏ + 2y = 2u̇+ 3u

The poles of the system are given by (−2,−1).

4.4 a. Partial fraction expansion of the transfer function yields

G(s) = 2 +
2

s+ 3
− 5

s+ 2

and by applying the inverse Laplace transform, one obtains the impulse
response

h(t) = L−1G(s) = 2δ(t) + 2e−3t − 5e−2t, t ≥ 0.

Comment. Because the system matrix was given in diagonal form, another
possibility would have been to compute the impulse response as

h(t) = CeAtB +Dδ(t) =


−1 1












e−2t 0

0 e−3t

















5

2







+ 2δ(t), t ≥ 0.
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The step response is computed by e.g. integrating the impulse response

y(t) =

∫ t

0
h(τ)dτ =

∫ t

0

(

2δ(τ) + 2e−3τ − 5e−2τ
)

dτ

= 2 +

[

5

2
e−2τ − 2

3
e−3τ

]t

0

=
1

6
+

5

2
e−2t − 2

3
e−3t, t ≥ 0.

The step response can also be obtained by the inverse Laplace transform
as follows

y(t) = L−1(G(s)·1
s
) = L−1

(

2

s
+

2

s(s+ 3)
− 5

s(s+ 3)

)

=
1

6
+
5

2
e−2t−2

3
e−3t, t ≥ 0.

In MATLAB, the following code can be used

% Define the matrices

A = [−2 0 ; 0 −3];
B = [5;2];

C = [−1 1];

D = 2;

% Create the state space representation of the system

system = ss(A,B,C,D);

% Impulse response

impulse(system)

% Step response

step(system)

Comment. The δ(t)-part of the impulse response is not depicted when using

impulse in MATLAB. It would be an infinite spike at t = 0.

b. The transfer function has the partial fraction expansion

G(s) =
1

s+ 1
+

1

s+ 2

and the impulse response becomes

h(t) = L−1G(s) = e−t + e−2t, t ≥ 0.

The step response is thus given by

y(t) =

∫ t

0
h(τ)dτ =

3

2
− e−t − 1

2
e−2t, t ≥ 0.

In MATLAB, the following code can be used
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3 4 5 6 7

−10

−5

0

5

10

x

Taylor expansion

f(x)

Figure 4.1 Plot of f(x) = (x− 2)2 − 9 and its first order Taylor serires expansion
around x = 5.

% Define the transfer function from the result in the previous exercise

s = tf('s'); % Determine frequency variable

G = (2*s+3)/(sˆ2+3*s+2);

% Impulse response

impulse(G)

% Step response

step(G)

In the previous exercises of this chapter we treated linear systems. The
analysis of nonlinear systems is more involved than that of linear sys-
tems. However, linearizing the nonlinear dynamics around a stationary
point can give us an approximation of the system’s behavior locally.

4.5 Recall that a first order taylor expansion is given by

f(x) ≈ f(x0) +
df

dx
(x0)(x− x0).

This is a linear approximation of f(x) around x = x0.
df
dx = 2(x − 2).

Then,

f(x) ≈ df

dx
(5)(x − 5) = 6x− 30.

See Figure 4.1 for a plot.

4.6 a. For x0 = 4 we have ẋ = −5 + u2. A stationary point is achieved for
u0 = ±

√
5.
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b. Calculations gives

∂f

∂x
(x0, u0) = 4,

∂f

∂u
(x0, u0) = 2

√
5,

∂y

∂x
(x0) = 1.

Let

∆x =x− x0

∆u =u− u0

∆y =y − y0,

with y0 = x0. The linearized system is then given by

∆ẋ =4∆x+ 2
√
5∆u

∆y =∆x.

4.7 a.

ẋ1 = x2

ẋ2 = −√
x1 − x1x2 + u2

y = x1

b. A stationary point implies ẋ1 = ẋ2 = 0. From the first equation we
directly obtain x2 = 0. Subsequently, the second equation yields

√
x1 =

u2. Hence there are infinitely many stationary points and they can be
parametrized through t as (x01, x

0
2, u

0) = (t4, 0, t).

c. u0 = 1 gives the stationary point (x01, x
0
2, u

0) = (1, 0, 1). We let

f1(x1, x2, u) = x2

f2(x1, x2, u) = −√
x1 − x1x2 + u2

g(x1, x2, u) = x1

Do taylorexpansion of these functions in the stationary point and use
only the linear terms to linearize the system. Start by computing the
partial derivatives

∂f1
∂x1

= 0
∂f1
∂x2

= 1
∂f1
∂u

= 0

∂f2
∂x1

= − 1

2
√
x1

− x2
∂f2
∂x2

= −x1
∂f2
∂u

= 2u

∂g

∂x1
= 1

∂g

∂x2
= 0

∂g

∂u
= 0

At the stationary point we have

∂f1
∂x1

(x01, x
0
2, u

0) = 0
∂f1
∂x2

(x01, x
0
2, u

0) = 1
∂f1
∂u

(x01, x
0
2, u

0) = 0

∂f2
∂x1

(x01, x
0
2, u

0) = −1

2

∂f2
∂x2

(x01, x
0
2, u

0) = −1
∂f2
∂u

(x01, x
0
2, u

0) = 2

∂g

∂x1
(x01, x

0
2, u

0) = 1
∂g

∂x2
(x01, x

0
2, u

0) = 0
∂g

∂u
(x01, x

0
2, u

0) = 0
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Solutions to chapter 4. Linear systems and linearization

Use the following variable substitution

∆x1 = x1 − x01

∆x2 = x2 − x02

∆u = u− u0

∆y = y − y0

The linearized system is then









∆ẋ1

∆ẋ2








=











∂f1
∂x1

(x01, x
0
2, u

0) ∂f1
∂x2

(x01, x
0
2, u

0)

∂f2
∂x1

(x01, x
0
2, u

0) ∂f2
∂x2

(x01, x
0
2, u

0)



















∆x1

∆x2








+











∂f1
∂u (x

0
1, x

0
2, u

0)
∂f2
∂u (x

0
1, x

0
2, u

0)











∆u

∆y =




∂g
∂x1

(x01, x
0
2, u

0) ∂g
∂x2

(x01, x
0
2, u

0)












∆x1

∆x2








+

∂g

∂u
(x01, x

0
2, u

0)∆u

Where the derivates are given as their value in the stationary point.
Using the specific values gives









∆ẋ1

∆ẋ2








=









0 1

−1
2 −1

















∆x1

∆x2








+









0

2








∆u

∆y =


 1 0












∆x1

∆x2









4.8

a. Using the fact that

dS

dt
+

dI

dt
= −βIS + γI + βIS − γI = 0,

it follows that
S(t) + I(t) = C,

where C is a constant. We know that for time t = 0

C = S(0) + I(0) = 0.8 + 0.2 = 1

and thus, S(t) + I(t) = 1.

b.

dS

dt
=− βIS + γI = 0

dI

dt
=βIS − γI = 0

gives that I(βS − γ) = 0. Using the fact that I(t) + S(t) = 1 for all t,
two stationary points can be derived

(

S0, I0
)

1
= (1, 0) and

(

S0, I0
)

2
= (γ/β, 1 − γ/β).

57



Solutions to chapter 4. Linear systems and linearization

c. Denote dS/dt = f1(S, I) and dI/dt = f2(S, I). The partial derivatives
are given by

∂f1
∂S

= −βI
∂f1
∂I

= −βS + γ

∂f2
∂S

= βI
∂f2
∂I

= βS − γ.

Further, the linearized system around (S0, I0) can be written as

[

∆̇S

∆̇I

]

=

[−βI0 −βS0 + γ

βI0 βS0 − γ

] [

∆S

∆I

]

where ∆S = S − S0 and ∆I = I − I0.
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Solutions to Chapter 5. Stability of linear

systems, and pharmacokinetics

5.1 a. The poles are the solutions of the characteristic equation s2+4s+3 = 0,
i.e. s = −1 and s = −3. The poles are in the left half-plane and the
system is therefore stable.

b. The input (an impulse) has the Laplace transform U(s) = 1. The out-
put becomes

Y (s) = G(s)U(s) =
1

s2 + 4s + 3
=

1

(s+ 1)(s + 3)

Inverse Laplace transformation gives

h(t) =
e−t − e−3t

2

The following code results in a plot of the impulse response:

s = tf('s');

G = 1/(sˆ2+4*s+3);

impulse(G)

c. The input (a step) has the Laplace transform U(s) = 1/s. The output
becomes

Y (s) = G(s)U(s) =
1

s2 + 4s + 3

1

s
=

1

s(s+ 1)(s + 3)

Inverse Laplace transformation gives

h(t) =
1

3
+

1

6

(

e−3t − 3e−t
)

The following code results in a plot of the step response:

s = tf('s');

G = 1/(sˆ2+4*s+3);

step(G)

5.2 To be asymptotically stable, all eigenvalues of the system matrix A
must lie strictly within the left half plane (LHP), i.e., Re(λi) < 0 ∀ i.

The eigenvalues of A are given by the characteristic equation

det(λI −A) = 0.

a. The eigenvalues are given by λ1 = −1 and λ2 = −2. Thus, this system
is (asymptotically) stable.
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b. The eigenvalues are given by λ1 = 1 and λ2 = 2 and the system is
unstable.

c. The eigenvalues are given by λ1 = −i and λ2 = i. Since the eigenvalues
do not lie strictly within the LHP, the system is not asymptotically
stable. However, it is defined as marginally stable as the eigenvalues do
not lie in the right half plane (RHP). It is easy to see the difference in
the two stability notions asymptotic stability and marginal stability by
comparing the impulse responses of the systems in a and c.

5.3 a. The output is given by

y(t) = |G(3i)| sin
(

3t+ argG(3i)
)

where

|G(iω)| = 0.01
√
1 + 100ω2

√
1 + ω2

√
1 + 0.01ω2

and
argG(iω) = arctan 10ω − arctanω − arctan 0.1ω

For ω = 3 one obtains |G(iω)| = 0.0909 and argG(iω) = −0.003 which
gives

y(t) = 0.0909 sin(3t− 0.003)

b. Reading from the plot yields |G(3i)| ≈ 0.09 and argG(3i) ≈ 0. Thus,
we obtain

y(t) = 0.09 sin 3t

5.4 The stationary points are
(

S0, I0
)

1
= (1, 0) and

(

S0, I0
)

2
= (γ/β, 1 − γ/β).

Further, the linearized system around (S0, I0) can be written as
[

∆̇S

∆̇I

]

=

[−βI0 −βS0 + γ

βI0 βS0 − γ

] [

∆S

∆I

]

where ∆S = S − S0 and ∆I = I − I0.

Thus the linearized system around
(

S0, I0
)

1
= (1, 0) is given by

[

∆̇S

∆̇I

]

=

[

0 −β + γ

0 β − γ

] [

∆S

∆I

]

.

It has poles 0 and β−γ. If β−γ < 0 it is marginally stable. Otherwise,
unstable.

The linearized system around
(

S0, I0
)

2
= (γ/β, 1 − γ/β) is given by

[

∆̇S

∆̇I

]

=

[

γ − β 0

β − γ 0

] [

∆S

∆I

]

which has poles in 0 and γ−β. It is marginally stable if γ− β < 0 and
unstable otherwise.

They can not be stable at the same time. For any given γ and β, one
system is stable and the other one unstable.
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5.5

dq

dt
=

DA

d
(Cs − Cb) = −4

The rate is −4.

5.6

a. Let C(t) be the concentration at time t. The initial condition and bal-
ance equation of the system are the following

C0 = 300 [units/ml]

dC

dt
= −kC

The solution of the differential equation is

C(t) = C0e
−kt

After 8 days, the concentration is halved. Therefore, if the half-life is
stated as t1/2 = 8, the concentration at t1/2 is given by

C(t1/2) =
C0

2
= C0e

−kt1/2

Thus k is,

k =
ln(2)

t1/2
=

0.6931

8
= 0.0866 days−1

and the dynamics are stable.

b. Given the solution to the previous subproblem, the formula for the
concentration is given by

C(t) = C0e
−0.0866·t [units/ml] (5.1)

When t = 7 [days]

C(7) = C0e
−0.0866·7 = 163 [units/ml]

c. Plot equation (5.1) using MATLAB.
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d. From the first subproblem we derived the time trajectory of the con-
centration as

C(t) = C0e
−0.0866·t [units/ml].

We are interested in the time at which C(t) = 0.4C0. Hence we want
to slove for t in

0.4C0 = C0e
−0.0866·t → t = − 1

0.0866
ln(0.4) = 10.6 [days]

e. Consider again

C(t) = C0e
−kt

and set t = 25 [days], C0 = 90 and C(25) = 80 to determine k. Then
determine t1/2 by using the derived k and C(t1/2) = C0/2. The half-life
is 147 days.

5.7

a. The 3-compartment model is given below. Here we have included both
the oral dose entering the gut compartment as well as the intravenous
injection entering the body compartment. The intravenous injection
will be used in the last subproblem. You can ignore the arrow drawn
for the intravenous injection for now.

QB, VB QL, VL

kBL

kLB

QG, VG
Qoral dose

ke,G

kGB

ke,B ke,L

Qiv dose

b. The state-space representation becomes:





Q̇G

Q̇B

Q̇L



 =





−(ke,G + kGB) 0 0

kGB −(ke,B + kBL) kLB

0 kBL −(ke,L + kLB)









QG

QB

QL



+





1

0

0



Qod

y =
1

VL
[ 0 0 1 ]





QG

QB

QL





where QG, QB, QL [mg], are the drug masses in the gut, body and liver
compartment, and Qod [mg/min] is the rate of the orally administered
drug.

c. Simulation of 500mg dose is given in Fig. 5.1 below. For code, go to
the solution of the last subproblem.
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Figure 5.1 Liver concentration at 500 mg dose

d. Simulating the system with an oral prescription of 500mg over five
minutes every 24 hours produces the blue curve in Fig.5.2. The out-
put oscillates heavily with a 24 hour period. An alternative medication
strategy is to administer the drug in half the dose every 12 hours in-
stead, which is shown by the green curve.

e. To determine the constant iv-dose we need to augment the original
model to consider this input instead of the oral input. The new system,
with Qiv [mg/min] as the intravenous injection rate, becomes:







Q̇G

Q̇B

Q̇L






=







−(ke,G + kGB) 0 0

kGB −(ke,B + kBL) kLB

0 kBL −(ke,L + kLB)













QG

QB

QL






+







0

1

0






Qiv

y =
1

VL

[

0 0 1
]







QG

QB

QL







To determine the constant dose Qc
iv needed to maintain a steady-state

concentration of yc = 112 mg/dl, we need to determine the static gain
of the system. We note in the new system that QG is zero, and can
thus reduce the system to a smaller one,

[

Q̇B

Q̇L

]

=

[

−(ke,B + kBL) kLB

kBL −(ke,L + kLB)

][

QB

QL

]

+

[

1

0

]

Qiv

y =
1

VL

[

0 1
]

[

QB

QL

]

The transfer function from Qiv to y is given by:

GyQiv (s) = C(sI −A)−1B
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The static gain is

GyQiv(0) =
1

VL · 10
kBL

(ke,B + kBL)(ke,L + kLB)− kLBkBL
= 395.99

, where the factor 10 is used to convert the volume from liters to dl.
Thus:

Qc
iv =

yc

GY Qiv(0)
= 0.2827

Simulations in Matlab, illustrated by the red curve in Fig 5.2, confirms
that the constant intravenous injection eliminates the oscillations of
the drug concentration in the liver.

0 20 40 60 80 100 120 140 160
0

50

100

150

Time [h]

Li
ve

r 
co

nc
en

tr
at

io
n 

[m
g/

dl
]

 

 

500 mg every 24 h
250 mg every 12h
constant IV infusion

Figure 5.2 Liver concentration at different medication strategies

Code for simulating the system with all three types of input.

%−−−−−−−−−−−−−
% Parameters

%−−−−−−−−−−−−−
ke1 = 0.02;% minˆ−1
ke2 = 3e−4;% minˆ−1
ke3 = 8e−4;% minˆ−1
k12 = 0.1;% minˆ−1
k23 = 4e−3;% minˆ−1
k32 = 1e−3;% minˆ−1
VL = 2.7; %dl

%% Subproblem c

% Define system with oral input

%−−−−−−−−−−−−−−
A = [−(ke1+k12) 0 0;...

k12 −(ke2+k23) k32;...

0 k23 −(ke3+k32)];
B = [1 0 0]'; % Oral input
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C = 1/VL*[0 0 1]; % Liver concentration [mg/dl]

D = [];

sys = ss(A,B,C,D);

% Oral dose 500 mg, assuming it takes 5 minutes to dissolve.

% Make the trajectory over 168 hours

%−−−−−−−−−−−−−−−−
u oral = [100*ones(5,1); zeros(168*60−5,1)]; % 500 mg tablet dissolved

%over the first 5 minutes

% initial value

x0 = [0 0 0]'; %Assume we start with no drug in the body

% simulation time

T = [0:1:(168*60−1)];

% Simulate

[y 1,T,x] = lsim(sys,u oral,T,x0);

figure(1)

plot(T/60,y 1)

hold on

ylabel('Liver concentration [mg/dl]')

xlabel('Time [h]')

%% Subproblem d

% add the dosage in subproblem c every 24 hours

u onedose = [100*ones(5,1); zeros(24*60−5,1)];
u oral24 = repmat(u onedose,7,1); % 7 24−hour periods on 168 hours

% Simulate

[y 2,T,x] = lsim(sys,u oral24,T,x0);

figure(1)

plot(T/60,y 2)

% alternative dosage: half the dosage every 12 hours

u onedose = [100; 100; 50; zeros(12*60−3,1)];
u oral12 = repmat(u onedose,14,1); % 14 12−hour periods on 168 hours

% Simulate

[y 3,T,x] = lsim(sys,u oral12,T,x0);

figure(1)

plot(T/60,y 3)

%% Subproblem e

% Define system with itravenous input

%−−−−−−−−−−−−−−
A = [−(ke1+k12) 0 0;...

k12 −(ke2+k23) k32;...

0 k23 −(ke3+k32)];
B = [0 1 0]'; % IV input

C = 1/VL*[0 0 1]; % Liver concentration [mg/dl]

D = [];

sys = ss(A,B,C,D);

figure(2)

step(sys)
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% From the step response it is evident that the static gain of the system

% is approx. 400 mg/dl. Could aso be calculated as follows:

static gain = dcgain(sys);

% If we want to achieve steady state liver concertration of 112 mg/dl we

% need the following magnitude of the constant iv−input:
u iv mag = 112/static gain; % U(0) = Y(0)/G(0);

% create the time trajectory of the IV−input
u iv = u iv mag*ones(length(T),1);

% simulate

[y 4,T,x] = lsim(sys,u iv,T,x0);

figure(1)

plot(T/60,y 4)

legend('500 mg once','500 mg every 24 h','250 mg every 12h','constant IV infusion',...

'Location','SouthEast')

Of course, another approach is to compute the static gain using MATLAB.
Example code is given below.

sys = ss(A,B,C,[]);

static gain = dcgain(sys);
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Solutions to Chapter 6. Feedback in linear

systems, and tracer kinetics

6.1 a. Laplace transformation of the differential equation yields

sY (s) + 0.01Y (s) = 0.01U(s)

The transfer function G(s) is thus given by

Y (s) = G(s)U(s) =
0.01

s+ 0.01
U(s)

b. The block diagram of the closed loop system becomes

Σ
r u y

K G

−1

c. The transfer function of the closed loop system becomes

G(s)K

1 +G(s)K
=

0.01K

s+ 0.01 + 0.01K
.

d. The closed-loop system is stable as long as s + 0.01 + 0.01K = 0 has
solution with negative real-part. This is equivalent to −0.01(1+K) < 0,
i.e., K > −1.

e. The closed-loop system with K = 10 is given by 0.1
s+0.11 . The static gain

is thus 0.1
0.11 ≈ 0.91. The substrate y will be 91% of the reference value

r when t → ∞.

6.2

a. The complex number is rotated 90◦ degrees counter-clockwise. For ex-
ample, 1 · e90j = e(0+90)j = j.

b. To find the margins, consider for which amplifications and phase shifts
the Nyquist curve encircles −1. Remember that the Nyquist curve is
a plot of complex number in the complex plane. The exact values are
amplitude margin, Am = 3, and phase margin, φm ≈ 34◦. Your results
should be similar.

6.3

a. From the Nyquist plot it is clear that the amplitude margin is Am =
1/2, and thus the largest K is 1/2.
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Solutions to chapter 6. Feedback in linear systems, and tracer kinetics

b.

Σ K G(s)

−1

r e y

6.4

a. Rewrite the system as

(1 + 10s)2Y (s) = e−2sU(s),

(100s2 + 20s + 1)Y (s) = e−2sU(s)

Then, via the inverse Laplace transform, we get

100ÿ + 20ẏ + y = u(t− 2).

Choosing x1 = y and x2 = ẏ, we get the following state-space repre-
sentation

[

ẋ1

ẋ2

]

=

[

0 1

−0.01 −0.2

] [

x1

x2

]

+

[

0

0.01

]

u(t− 2)

y = [ 1 0 ] [x1 x2 ]
T .

b. The problem is solved using the Nyquist criterium. The open-loop sys-
tem is given by:

G(s) =
e−2s

(1 + 10s)2

The phase of the process is:

argG(iω) = −2ω − 2 arctan(10ω)

We want to find the frequency for which the phase is −180◦. This can
be calculated by:

−2ω − 2 arctan(10ω) = −π

This equation lacks analytical solutions. We can, however, solve it
graphically. This gives

ω0 ≈ 0.31.

Next we determine the gain at this frequency:

|G(iω0)| =
1

1 + 100ω2
0

= 0.095

This yields the amplitude margin:

Am =
1

G(iω0)
= 10.5

Therefore, the gain K ≈ 10.5 is the largest gain we can allow and still
maintain stability.
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Solutions to chapter 6. Feedback in linear systems, and tracer kinetics

6.5 We denote the system as

GP (s) =
0.01

s+ 0.01

and the controller as GR = K. As in the previous problem, the transfer
function of the closed loop system becomes

GP (s)GR(s)

1 +GP (s)GR(s)
=

0.01
s+0.01K

1 + 0.01
s+0.01K

=
0.01K

s+ 0.01 + 0.01K

The desired and actual characteristic polynomials are the same if all
their coefficients match. Identification of coefficients yields, in the case
s+ 0.1,

0.1 = 0.01 + 0.01K ⇔ K = 9

and in the case s+ 1,

1 = 0.01 + 0.01K ⇔ K = 99.

The static gains of the two closed-loop systems are 0.9 and 0.99, re-
spectively. The following code is an example of how to plot the step
response of the two systems.

s = tf('s');

G 1 = 1/(s+0.1); %Could also write G 1 = 0.09/(s+0.1)

G 2 = 1/(s+1);

% normalize

G 1 = G 1/dcgain(G 1);

G 2 = G 2/dcgain(G 2);

% plot

step(G 1,G 2)

legend('G 1','G 2')

The second system is faster. It has its pole further to the left in the left
half-plane.

6.6 Open-loop transfer function:

Go(s) =
K(s+ 10)(s + 11)

s(s+ 1)(s + 2)
= K

Q(s)

P (s)

Closed-loop system becomes:

G(s) =
Go(s)

1 +Go(s)
=

KQ(s)

P (s) +KQ(s)

Characteristic equation:

P (s) +KQ(s) = 0 ⇔
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Solutions to chapter 6. Feedback in linear systems, and tracer kinetics

s(s+ 1)(s + 2) +K(s+ 10)(s + 11) = 0 ⇔
s3 + (3 +K)s2 + (2 + 21K)s+ 110K = 0

In the collection of formulae when can find the following usefull prop-
erty. A third order s3+ as2+ bs+ c has negative zeros if a, b, c > 0 and
ab > c.

Requirement for stability is then that all coefficients of:

s3 + (3 +K)s2 + (2 + 21K)s + 110K

are positive, and that

(3 +K)(2 + 21K) > 110K

The inequality gives

K2 − 15

7
K +

2

7
> 0

Which is fulfilled for K > 2 and K < 1/7. Thus, the closed-loop system
is stable for:

0 < K <
1

7

and
K > 2

6.7 It is determined by the static gain of the system times the rate u0, i.e.,
5.3
2.8u0.
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Solutions to Chapter 7. Metabolism,

glucose and insulin kinetics

7.1 The energy for physical activity is:

Ep = Ein −EDIT − EBMR − ES = 3000 − 2241 − 0 = 759 kcal.

Then you can run for 759/11.3 ≈ 66.2 minutes and with the given pace
you will run 11.4 km in that time.

7.2

a. kgri represents the kinetic coefficient between the solid and the liq-
uid compartments of the stomach. In the comparison between boiled
potatoes and mashed potatoes it seems likely that the mashed potatoes
would have a larger value for this parameter, thereby resulting in faster
dynamics.

b. The system can be written on state space form as





q̇sto1

q̇sto2

q̇gut



 =





−kgri 0 0

kgri −kempt 0

0 kempt −kabs









qsto1

qsto2

qgut



+





1

0

0



C(t)

Ra(t) = [ 0 0 kabs
V ]





qsto1

qsto2

qgut





The poles of the system are given by the solutions to

det(sI −A) = 0 → (s+ kgri)(s + kempt)(s+ kabs) = 0.

That is the poles are given by −kgri, −kempt and −kabs. As these pa-
rameters are always positive, the poles are always negative, and hence
the system is stable.

c. Given parameter values kgri = kempt = kabs = 1 and V = 1, the system
G in the frequency domain is given by

G =
1

(s+ 1)3
.

Given the controller K(s), the closed-loop system is given by

Gyr =
G(s)K(s)

1 +G(s)K(s)
=

K(s)

(s + 1)3 +K(s)
.

In the P-controller case we have K(s) = 3.6. Thus,

Gyr =
3.6

(s+ 1)3 + 3.6
=

3.6

s3 + 3s2 + 3s+ 4.6
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Solutions to chapter 7. Metabolism, glucose and insulin kinetics

and the static gain is 3.6/4.6 ≈ 0.78.

In the PI-controller case we have K(s) = 3.2 + 1.7/s = 3.2s+1.7
s . Thus,

Gyr =
3.2s + 1.7

s(s+ 1)3 + 3.2s + 1.7
=

3.2s + 1.7

s4 + 3s3 + 3s2 + 4.2s+ 1.7

and the static gain is 1.7/1.7 = 1.

In the PID-controller case we haveK(s) = 4.3+3.5/s+1.3s = 1.3s2+4.3s+3.5
s .

Thus,

Gyr =
1.3s2 + 4.3s + 3.5

s(s+ 1)3 + 1.3s2 + 4.3s + 3.5
=

1.3s2 + 4.3s + 3.5

s4 + 3s3 + 4.3s2 + 5.3s + 3.5

and the static gain is 3.5/3.5 = 1.

The static gains imply that the reference will be tracked to 78% in the
P-controller case, while tracked fully in the PI and PID cases. In other
words, the PI and PID controllers can remove stationary errors, i.e.,
make e(t) → 0 as t → ∞.

7.3 The differential equation becomes:

ĠISF (t) = −k3 ·GISF (t) + k3Gp

In the Laplace-domain:

L(GISF ) =
k3

k3 + s
L(Gp)

The amplitude for ω = 1 is 10/
√
101 ≈ 1 while the amplitude for

ω = 100 is ≈ 0.1. Low frequency signals can pass through unchanged
while high frequency signals are attenuated.

7.4 • Larger K gives lower stationary error.

• IncreasingKi makes the controller reach the set point faster. How-
ever, to big Ki will make the system very oscillating.

• Yes you can.
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Solutions to Chapter 8. State feedback,

biomechanics and posture control

8.1

a. With x1 = y and x2 = ẏ the system is given by









ẋ1

ẋ2








=













0 1

− k

m
− c

m





















x1

x2









y =


 1 0












x1

x2









b. The poles are s = −c/2m± i
√

k/m− c2/4m2. A change in k implies a
change of the imaginary part of the poles. A change in c affects both
the real and imaginary parts.

The parameter m is positive as it is the mass. The value under the
square-root is always positive as k > c2/4m by assumption. Thus, the
stability is only dependent on the sign of c. c > 0 renders a stable
system while negative c makes it unstable.

8.2

a. The serial part describes the tendon and the parallell part ’the rest’ of
the muscle.

b. The contracting force is given by the sum of the individual forces,
F = ηẋ+KPx+ Fc = −η · 0.1 −KP · 1 + 3 = 0.97.

c. We note that F (t) is smaller than Fc(t) = 1.

8.3

a. The transfer function is given by

GyC(s) = [ 0 1/V ]

(

s+ kabs 0

−0.9kabs s+ kdec

)−1 [ 1

0

]

=
0.9kabs

V (s + kabs)(s + kdec)
.

The poles of the system are given by −kabs and −kdec. Alternative

solution: First, consider the transfer function from C to qint. Then
construct the transfer function from qint to qblo. Lastly, determine the
transfer function from qblo to y, by isolating the three equations. The
transfer function from C to qint is given by 1/(s+kabs) (via the Laplace
transform of the first system’s equation). Similarly, the transfer func-
tion from qint to qblo is given by kabs/(s + kdec). Lastly, the transfer
function from qblo to y is given by 1/V . We can then construct the
transfer function from C to y as follows:

GyC(s) = Gyqblo ·Gqbloqint ·GqintC =
0.9kabs

V (s+ kdec)(s+ kabs)
.

73



Solutions to chapter 8. State feedback, biomechanics and posture control

b. The static gain is given by GyC(0) = 0.9/(V kdec). If there is a constant
intake of C(t) = x [g/min], then the glucose concentration is plasma
will become 0.9x/(V kdec) ≈ 0.04x [g/l] as t → ∞.

c. We know that

Y (s) = GyC(s)C(s) =
0.9kabs

V (s+ kabs)(s+ kdec)
C(s)

and the control law gives that C(s) = KR(s) − KY (s). Hence, Y =
Gyc(KR(s)−KY (s)) which gives us the closed-loop transfer function

Y (s)

R(s)
=

KGyc

1 +KGyc
=

K0.9kabs
V (s+ kabs)(s + kdec) +K0.9kabs

.

The poles are thus given by the solutions of

V (s+ kabs)(s + kdec) +K0.9kabs = 0

5(s+ 10)(s + 5) +K0.9 · 10 = 0

(s+ 10)(s + 5) + 1.8K = 0

s2 + 15s + 50 + 1.8K = 0

which are −(15/2 ±
√

(15/2)2 − 1.8K − 50).

d. Consider the open-loop system on state space form

[

q̇int

q̇blo

]

=

[ −kabs 0

0.9kabs −kdec

] [

qint

qblo

]

+

[

1

0

]

C(t)

y = [ 0 1
V ]

[

qint

qblo

]

.

Write the control law as

C(t) = r − [ l1 l2 ]

[

qint

qblo

]

.

The closed-loop system can then be written as

[

q̇int

q̇blo

]

=

([ −kabs 0

0.9kabs −kdec

]

−
[

1

0

]

[ l1 l2 ]

)[

qint

qblo

]

+

[

1

0

]

r

y = [ 0 1
V ]

[

qint

qblo

]

.

and further to

[

q̇int

q̇blo

]

=

[−kabs − l1 −l2

0.9kabs −kdec

]

=A

[

qint

qblo

]

+

[

1

0

]

r

y = [ 0 1
V ]

[

qint

qblo

]

.
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The poles are given by the solution to

det(sI −A) = 0

(s+ kabs + l1)(s + kdec) + 0.9l2kabs = 0

s2 + (l1 + kabs + kdec)s+ (kabs + l1)kdec + 0.9l2kabs = 0

s2 + (l1 + 15)s + 5(l1 + 10) + 9l2 = 0

which are (−(l1 + 15)/2 ±
√

(l1 + 15)2/4− 5(l1 + 10)− 9l2.

e. The poles of the open-loop system are −kabs = −10 and −kdec = −5.
Given the first control law, the poles are

p1 = −15/2 +
√

(15/2)2 − 1.8K − 50, p2 = −15/2 −
√

(15/2)2 − 1.8k − 50.

This can be rewritten as

p = −15/2 ±√
q

for any q. So p1 can only be chosen on the real axis or on the line
−15/2 + ki. p2 will always be p1 mirrored through the point −15/2.
Thus the poles can not placed arbitrary. Note especially that if we place
p1 far into the LHP (p1 < −15), p2 will be in the RHP.

Given the second control law, the poles are

p1 = (−(l1 + 15) +
√

(l1 + 15)2 + 200(l1 + 10)l2)/2

p2 = (−(l1 + 15)−
√

(l1 + 15)2 + 200(l1 + 10)l2)/2.

Here we can place the poles arbitrarily (except that the poles most be
mirrored if they have a complex part.) This is perhaps more easily seen
in the characteristic equation for the closed loop system,

s2 + (l1 + 15)s + 5(l1 + 10) + 9l2 = 0,

here it is easy to see that we can chose l1 and l2 to match any charac-
teristic equation s2 + as+ b.

8.4 a. The closed loop system becomes
{

ẋ = (A−BL)x+Blrr

y = Cx

The characteristic equation is thus

det(sI −A+BL) = s2 + (0.5 + 3l1)s+ 3l2 = 0

We need (s + 4 + 4i)(s + 4 − 4i) = s2 + 8s + 32 = 0. Identification of
coefficients yields l1 = 5/2 = 2.5, l2 = 32/3 = 10.7. The closed loop
transfer function is G(s) = C(sI −A+BL)−1Blr. The stationary gain
is G(0) is unity if

G(0) = C(−A+BL)−1Blr =
3lr
32

= 1

yielding lr = 32/3.
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Solutions to chapter 8. State feedback, biomechanics and posture control

b. The closed loop system becomes

{

ẋ = (A−BL)x+Blrr

y = Cx

The characteristic equation is thus

det(sI −A+BL) = s2 + (3 + l1 + 2l2)s+ 2(1 + l1 + l2) = 0

We need (s+ 4)2 = s2 + 8s + 16 = 0. Identification of coefficients
yields l1 = 9, l2 = −2. The closed loop transfer function is G(s) =
C(sI −A+BL)−1Blr. The stationary gain is G(0) is unity if

G(0) = C(−A+BL)−1Blr =
lr
4
= 1

yielding lr = 4.

(This type of controller can only be designed when the system is con-
trollable.)

8.5 The system can be written as

ẋ =

















0 ω0 0

ω0 0 0

0 0 0

















x+

















a

0

b

















= Ax+Bu

With state feedback, u = −l1x1− l2x2− l3x3 = −Lx, the characteristic
equation of the closed loop system becomes

det
(

sI − (A−BL)
)

=

∣

∣

∣

∣

∣

∣

s+ al1 −ω0 + al2 al3

−ω0 s 0

bl1 bl2 s+ bl3

∣

∣

∣

∣

∣

∣

=

= s3 + (bl3 + al1)s
2 + ω0(−ω0 + al2)s− ω2

0bl3 = 0

Comparison with the wanted characteristic equation

(s+ α)(s2 + 2ζωs+ ω2) = s3 + (α+ 2ζω)s2 + (2αζω + ω2)s + αω2

gives


































l1 =
1

a

(

α
(

1 +
ω2

ω2
0

)

+ 2ζω

)

l2 =
1

aω0
(2αζω + ω2 + ω2

0)

l3 = −αω2

bω2
0
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Solutions to Chapter 9. The

Hodgkin-Huxley model

9.1 The Nernst equation for ion [i] is given by

Ei =
RT

zF
ln

(

Cout,i

Cin,i

)

where z - valence charge, Cout the ion concentration outside the cell, Cin

the ion concentration inside the cell, R - thermodynamic gas constant,
F - Faraday constant and T - temperature in Kelvin.

R = 8.31447 [J/mol·K], T = 273 + 25 [K] and F = 9.648534 · 104
[C/mol]. Hence, RT/F = 0.0257 [V] or 25.7 [mV].

Ion Inner conc. [µM] External conc. [µM] z

Na+ 12 145 1

K+ 155 4 1

Cl− 4.2 123 -1

Using the Nernst equation with the given values results in ENa = 64,
EK = −94 and ECl = −86 [mV].

If T is lowered by 20 degrees all equilibrium potentials will be lowered
by 1− (273 + 25− 20)/(273 + 25) = 0.0671, approximately 7 %.

9.2 a. How well a certain ion can pass through the membrane. Larger Pi means
that ion i has a large possibility of passing through the membrane, due
to many ion-channels being open.

b. If PNa would rise, it would shift the membrane potential closer to the
equilibrium potential of Na (64 [mV]). Consider,

VPNa→∞ = lim
PNa→∞

RT

F
ln

(

PK [K]2 + PNa[Na]2 + PCl[Cl]1
PK [K]1 + PNa[Na]1 + PCl[Cl]2

)

= lim
PNa→∞

RT

F
ln

(

PK
PNa

[K]2 + [Na]2 +
PCl
PNa

[Cl]1
PK
PNa

[K]1 + [Na]1 +
PCl
PNa

[Cl]2

)

=
RT

F
ln

(

[Na]2
[Na]1

)

9.3 a. % Channel gating kinetics

% Functions of membrane voltage

alpha m = @(V) 0.1*(V+45)./(1−exp(−(V+45)./10));
beta m = @(V) 4*exp(−(V+70)./18);
alpha h = @(V) 0.07*exp(−(V+70)./20);
beta h = @(V) 1./(1+exp(−(V+40)./10));
alpha n = @(V) 0.01*(V+60)./(1−exp(−(V+60)./10));
beta n = @(V) 0.125*exp(−(V+70)./80);

Vsweep = [−90 70];

fplot(alpha m,Vsweep, 'r−');
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hold on

fplot(beta m,Vsweep, 'r−−');

fplot(alpha h,Vsweep,'g−');
fplot(beta h,Vsweep, 'g−−');
fplot(alpha n,Vsweep,'b−');
fplot(beta n,Vsweep, 'b−−');
legend('alpha m', 'beta m', 'alpha h', 'beta h','alpha n', 'beta n' , ...

'Location', 'SouthEast');

xlabel('V (mV)');

ylabel('Kinetics Value');

xlim([Vsweep(1) Vsweep(end)]);

title('Channel Gating Kinetics');

b. From the graph we see that αm ≫ βm, βh ≫ αh and αn ≫ βn. Thus
we have that

dm

dt
≈ αm (V ) (1−m)

dh

dt
≈ −βh (V )h

dn

dt
≈ αn (V ) (1− n)

We can see that m and n increases, and are upper bounded by αm(V )
and αn(V ) respectivly. h decreases, and is lower bounded by 0.

c. m(t) - Na+ activation (of channels)

h(t) - Na+ de-activation (of channels)

n(t) - K+ activation (of channels)

9.4 g L = 0.3;

E L = −59.387;
C m = 1;

I L = @(V) g L*(V−E L);

I ext = @(t) 5.* floor(t ./ 100);

dVdt leak = @(t, V) (I ext(t) − I L(V)) ./ C m;

[t leak, V leak] = ode45(dVdt leak, [0 500], E L);

figure

subplot(2,1,1);

plot(t leak, V leak, 'k');

title('1B: Leaky Passive Neuron');

ylabel('V (mV)');

xlabel('t (ms)')

subplot(2,1,2);

plot(t leak, I ext(t leak), 'k');

xlabel('t (ms)');

ylabel('I {ext} (\mu{A}/cmˆ2)');
ylim([−1 max(I ext(t leak))+1]);
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This simulates a passive membrane, which only filters the external cur-
rent through the mebrane. It can not simulate an action potential.
Thus, it is the currents of Na and K in response to the external cur-
rent that are responsible for the action potential.

9.5 a. V = ss(0,1,1,0);

T = 0:0.1:2*pi;

lsim(V,sin(2*T),T)

During a period of the current, i.e., [0,Π], the voltage is increased from
zero to one and then decreased to zero again.

b. g L = 0.3;

E L = −59;
i L = @(V) −g L*(V−E L);

fplot(i L,[−90 70])

The current iL is positive for V ∈ [−90,−EL] and then negative. That
is, when the potential V is larger than EL, the current changes direc-
tion.

c. The dynamics are given by

Cm
dV

dt
= i(t) = iNa + iK + iL

which is the Hodgkin-Huxley model without the external input.
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Solutions to Chapter 10. Blood flow control

and heart rate dynamics

10.1 Cardiac output is the stroke volume times the heart rate, i.e., 3 l/min.
The cardiac index is the cardiac output divided by the body surface
area, which becomes ≈ 1.9 l/min·m2.

10.2 The problem is solved using the Nyquist criterium. The open-loop sys-
tem is given by:

G(s) =
e−9s

(1 + 20s)2

The phase of the process is:

argG(iω) = −9ω − 2 arctan(20ω)

We want to find the frequency for which the phase is −180◦. This can
be calculated by:

−9ω − 2 arctan(20ω) = −π

This equation lacks analytical solutions. After an initial guess and some
numerical iterations we get:

ω0 ≈ 0.1.

Next we determine the gain at this frequency:

|G(iω0)| =
1

1 + 400ω2
0

= 0.2

This yields the amplitude margin:

Am =
1

G(iω0)
= 5

Therefore, the gain K = 5 is the largest gain we can allow and still
maintain stability.

10.3

a. Parameters: C - arterial compliance, R peripherial resistance, Ra - aor-
tic resistance, L - inertia coefficient of blood flow.

Input: qi- aortic blood inflow

States: p- aortic blood pressure distally, q̇L - inertia flow,

Output/measurement: pa - aortic blood pressure proximally.

b. The system matrices become:

A =

[

− 1
RC 0

0 −Ra
L

]

B =

[

1
C
Ra
L

]

C =
[

1 −Ra

]

D = Ra
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with x = [p q̇L], u = q̇i and y = pa.

The transfer function is given by:

G(s) = C(sI −A)−1B +D =
R

RCs+ 1
− Ra

L
Ra

s+ 1
+Ra

c. Static gain:

G(0) = R

d. The poles are (which can be seen directly from the A-matrix) − 1
RC and

−Ra
L .

e. The system cannot become unstable since R,C,Ra are positive num-
bers.

10.4

a. The main difference is that the VDP model is nonlinear while the vis-
coelastic model is linear. The terms in front of ẏ in the VDP and
viscoelastic models are −ν(1 − y2) and c, respectively, where the first
term is nonlinear while the second is just a constant.

b. nu = 1;

c = @(y) −nu*(1−yˆ2);
fplot(c,[−2 2])

Yes, the value of c(y) ranges between positive and negative values for
this set of y-values.

c. With x1 = y and x2 = ẏ the system is given by









ẋ1

ẋ2








=









0 1

−1 −c

















x1

x2









y =


 1 0












x1

x2







 .

The first case with c = 0.1 can be simulated as follows:

c = 0.1;

f = @(t,x) [0 1; −1 −c]*x;
[T,sol] = ode45(f,[0 100],[−0.1 0.1]);

plot(T,sol(:,1))

It illustrates positive damping. The dynamics are damped from their
initial state and reach the equilibrium point y = 0.

The second case with c = −0.1 can be simulated in a similar manner
as follows
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c = −0.1;
f = @(t,x) [0 1; −1 −c]*x;
[T,sol] = ode45(f,[0 50],[−0.1 0.1]);

plot(T,sol(:,1))

However, as you notice, the dynamics are unstable. In fact, this illus-
trates negative damping, i.e., the opposite of damping, and will move
the states away from the equilibrium point.

d. With x1 = y and x2 = ẏ and the VDP model on state space form is as
follows

ẋ1 = x2

ẋ2 = ν(1− x21)x2 − x1

y = x1.

e. ν = 0.1:

nu = 0.1;

f = @(t,x) [x(2); nu*(1−x(1)ˆ2)*x(2)−x(1)];

[T,sol] = ode45(f,[0 200],[−0.1 0.1]);

plot(T,sol(:,1))

Sinusoidal-looking behavior that reaches a maximum amplitude and
then stays there.

ν = 10 :

nu = 10;

f = @(t,x) [x(2); nu*(1−x(1)ˆ2)*x(2)−x(1)];

[T,sol] = ode45(f,[0 200],[−0.1 0.1]);

plot(T,sol(:,1))

Sharper behavior, however, still periodic that also find a maximum
amplitude and then stays there.

f. Initialized in y(0) = 3, ẏ(0) = 0.1

nu = 10;

f = @(t,x) [x(2); nu*(1−x(1)ˆ2)*x(2)−x(1)];

[T,sol] = ode45(f,[0 200],[3 0.1]);

plot(T,sol(:,1))

The trajectory of y finds its way to the same behavior as given the
other initial condition.

g. The stationary point is given by (x1, x2)
0 = (0, 0). The linearized sys-

tem around this point is given by
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[ ˙∆x1
˙∆x2

]

=

[

0 1

−1 ν

] [

∆x1

∆x2

]

,

y = [ 1 0 ]∆x.

h. The eigenvalues of

[

0 1

−1 ν

]

are given by p(p− ν) + 1 = 0, i.e., p = ν
2 ±

√

(ν/2)2 − 1. As ν > 0, the
real-part of the eigenvalues will always be positive, i.e., the linearized
system is unstable.

Note that the non linear system was marginally stable.
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and System Identification

11.1a.

∆V (s) =
C

1 +RCs
·∆pext(s)

b. The static gain of the system is equal to C and thus, C = 0.1 as read
from the plot.

c. Given the sinusoidal input sin(t), the response should have the form
∆V (t) = Asin(t + φ), where A = |V (i)| = C√

1+(RC)2
. Thus, R =

√

C2/A2 − 1/C =
√

0.12/0.0972 − 1/0.1 ≈ 2.5.

The true values are R = 2.4 and C = 0.1.

11.2a. -

b. The least squares solution is

(

â

b̂

)

=
(

ΦTΦ
)−1

ΦTy =

(

2.65

0.65

)

Hint: there is a formula on how to compute the inverse of a 2-by-2
matrix.

In MATLAB it could be calculated as

P = [1 1; 1 3; 1 5; 1 7];

y = [ 3 5 6 7]';

e = P\y;

% or

e = inv((P'*P))*P'*y;

Where a = e(1) and b =e(2). This uses the least squares method
to fit a+ bx to the points. Plot the points and the line in the same plot
to see the fit.

c. a = e(1);

b = e(2);

f = @(x) a +b*x;

figure

fplot(f,[1 7])

hold on

plot([1 3 5 7],y,'*r')

d. f = @(x) 2.7+0.6*x;

hold on

fplot(f,[1 7],'g')
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e. P = [1 1; 1 3; 1 7];

y = [ 3 5 7]';

e = P\y;

% or

e = inv((P'*P))*P'*y;

The estimates are both lowered.

11.3

a. The system response can be determined as y(t) = Dβe−αt. By exam-
ining the plot of the response β can be determined as β = y(0)/D.
Thereafter, α can be determined by any other point on the curve of
the system response. (Note that his method might not be applicable
to real system as it is impossible in most system to make a perfect
impulse.)

b. The transfer function is G(s) = β
s+α where β = 1/V1 and α = k. Thus

both parameters are identifiable.

c. The transfer function is G(s) =
1

V1
s+k21+k01

= β
s+α (note that the output

is independent of the second state, and thus it should not be a surprise
that the transfer function is of first order). V1 is uniquely identifiable
but k01 and k21 are not. We can only determine the sum of k01 and k21,
not separate them.

11.4

a. Let the regressor matrix be

Φ =











1 u1 u21
1 u2 u22
1 u3 u23
1 u4 u24











=











1 1 1

1 2 4

1 3 9

1 4 16











where ui is the i-th value of u in the table given in the exercise.

The least squares solution is then





â

b̂

ĉ



 =
(

ΦTΦ
)−1

ΦTy =





1

2

3





where y = ( 6 17 34 57 )T .

Hint: there is a formula on how to compute the inverse of a 3-by-3
matrix.

b. The noise alter the estimates. The larger the noise is, the more it
changes the estimates.
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11.5

a.

A =

[−1 0

0.9 −2

]

, B =

[

1

0

]

, C = [ 0 1 ]

b. ˙̃x = ẋ− ˙̄x gives

˙̃x = (A− LC)x̃

c. If we can show that (A−LC) have poles in the left half plane, it follows
that x̃ goes to zero. In general we have that

|sI −A+ LC| =
∣

∣

∣

∣

s+ 1 l1

−0.9 s+ 2 + l2

∣

∣

∣

∣

For the specific L it is easy to find that |sI−A+LC| = (s+1)(s+2+l2).
the poles are strictly negative for l2 > −2.

11.6

a. First, let’s consider the methanol metabolism. Using the information
about the half-life the elimination constant is determined to:

ke,M =
ln 2

T1/2
= 0.041h−1

Using this together with the information about the formic acid metabolism,
a state-space model(A,C, no B orD since there is no input) of the com-
bined compartment models of the methanol and formal acid metabolism
becomes:

A =







−ke,M 0 0

rL −(kLB + ke,F ) kBL

0 kLB −kBL







C =
[

0 0 1/VB

]

with x1 representing methanol content, x2 the liver content of formic
acid and x3 the blood content of formic acid.

b. Using an observer the state estimation becomes

˙̂x = Ax̂+K(y − ŷ)

ŷ = Cx̂

and

x̃ = x− x̂

˙̃x = (A−KC)x̃
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where

K =







k1

k2

k3







The characteristic polynomial:

det(sI −A+KC) =

∣

∣

∣

∣

∣

∣

∣

s+ ke,M 0 k1/VB

−rL s+ (kLB + ke,F ) −kBL + k2/VB

0 −kLB s+ kBL + k3/VB

∣

∣

∣

∣

∣

∣

∣

= (s+ ke,M )(s+ (kLB + ke,F )(s+ kBL + k3/VB)+

kLB(−kBL + k2/VB)) + rL(kLBk1/VB)

should match:

(s− p1)(s− p2)(s − p3)

where pi, i = [1, 2, 3] are the specified poles. After some algebra we can
conclude that:

k1 =
VB

rLkLB
(p1p2p3 − (ke,MkLBk2/VB + ke,MkEFk3/VB

+ ke,MkLBk3/VB + ke,MkEFkBL))

k2 =
VB

kLB
(p1p2 + p1p3 + p2p3 − ke,M (kLB + ke,F + kBL + k3/VB)

− kLBk3/VB − ke,FkBL − ke,Fk3/VB)

k3 = VB(p1 + p2 + p3 − ke,M − kLB − ke,F − kBL)

We can use place to verify the result:

% System

A = [−0.041 0 0 ; 0.7 −0.4 0.2; 0 0.25 −0.2];
C = [0 0 1/V B]; % We measure the formic acid concentration in blood

D = [];

% Determine observer gain

K = place(A',C',[−0.6 −0.8 −1.0])';
% Verify the eigenvalues of A−KC
eig(A−K*C)

c. Now, the measurements can be used as input in the observer system to
estimate the states:

˙̂x = (A−KC)x̂+Ky

(ŷ = Cx̂)

Below is a matlab script for determining the observer and to try the
observer on the data.
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% Parameters

V D = 50; % methanol distribution volume [liter]

V L = 1.2; % Formic acid, liver volume [liter]

V B = 5.7; % Formic acid, blood volume [liter]

% System

A = [−0.041 0 0 ; 0.7 −0.4 0.2; 0 0.25 −0.2];
C = [0 0 1/V B]; % We measure the formic acid concentration in blood

D = [];

% Determine observer gain

K = place(A',C',[−0.6 −0.8 −1.0])';
% Simulate with data

load('metanol data')

% Set up the system for the estimated state using the observer.

% Here, the measurements will act as an input variable, and thus K

% will be our B−matrix.
sys est = ss(A−K*C,K,C,D);
x1 hat 0 = 11.3e−3*32*50; % Initial value of metanol converted

% to g in V d

x23 hat 0 = Y(1)*V B; % Initial value of formic acid in liver

% and in blood

x hat 0 = [x1 hat 0;x23 hat 0;x23 hat 0];

[Y hat,T hat,X hat] = lsim(sys est,Y(2:end),[2:length(Y)],x hat 0);

%−−−−−−−−−−−−
% Plots

figure

%

subplot 311

plot(Y,'Linewidth',2)

hold all

plot(T hat,Y hat,'Linewidth',2)

ylabel(sprintf(['FA blood conc.\n[mmol/l]']))
%

subplot 312

plot(1000*X met,'Linewidth',2)

hold all

plot(T hat,1000*X hat(:,1)/(32*V D),'Linewidth',2)

ylabel(sprintf('Met. conc.\n [mmol/l]'))

%

subplot 313

plot(X fliver,'Linewidth',2)

hold all

plot(T hat,X hat(:,2)/V B,'Linewidth',2)

ylabel(sprintf('FA liver conc.\n [mmol/l]'))

xlabel('Time [h]')

legend('Data','Estimate')

set(findall(gcf,'−property','FontSize'),'FontSize',20)

The code produces the plot in Fig. 10.1 below.

d. No, it is not since the system is not fully observable using this mea-
surement. This can be seen from that the observability matrix O does
not have full rank.

O =







C

CA

CA2







when

C =
[

VD 0 0
]
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Figure 11.1 Measurements

With

C =
[

0 0 VB

]

however (using the formic acid blood concentration), the observability
matrix becomes

O =







0 0 0.17

0 0.04 −0.04

0.03 −0.03 0.02







and clearly has full rank.
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