1. Lectures

Lectures (30 hours) are held at:

Mondays 15.15–17.00 M:A
Tuesdays week 1–2 8.15–10.00 M:A
Wednesdays week 1–6 13.15–15.00 M:A

Pontus Giselsson and Anders Robertsson are lecturers and course responsible.

2. Exercises

Exercises (30 hours) are held in 5 groups. You can choose group freely. Time and place are given below. Detailed program for exercises are given on the last page. Exercise 7 (computer exercise) is held at lab facilities at the department.

<table>
<thead>
<tr>
<th>Group</th>
<th>Time</th>
<th>Location</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2.01-06</td>
<td>Tue 10–12</td>
<td>M:L1-L2</td>
<td>S.K.</td>
</tr>
<tr>
<td>F2.07-12</td>
<td>Tue 15–17</td>
<td>M:L1-L2</td>
<td>M.S.</td>
</tr>
<tr>
<td>I3.01-06</td>
<td>Tue 13–15</td>
<td>M:M1-M2</td>
<td>H.P.</td>
</tr>
<tr>
<td>Pi2</td>
<td>Tue 13–15</td>
<td>M:R</td>
<td>M.F.</td>
</tr>
</tbody>
</table>

Room changed to M:M1-M2 on Feb. 15.

3. Lab Exercises

In the course there are three mandatory lab exercises. These labs are rather extensive and for them to be meaningful you need to prepare. For Lab2 and Lab3 there are mandatory home problems, which you must be able to present at the start of the laboration. The second lab exercise also starts with a short test, and you must answer the questions correctly to be allowed to participate in the laboration. Lab manuals are sold at KF-Sigma. No laboratory reports need to be written. The lab facilities are on the bottom floor in the M-building.

The labs are performed during the hours 8.15–12.00, 13.15–17.00. They are not included in the schedule from the LTH schedule generator. You need to sign up to do the labs. Signup lists are available on the course home page, see

http://www.control.lth.se/education/engineering-program/frtf05-automatic-control-basic-course-for-fipi/

The signup lists are open during the week before the lab starts. Note that you must sign up during this week. If you are unable to attend the lab you should report this to the
administrators or lab responsible. Persons that have missed signing up in time or been absent from a lab without proper cause will have to do the lab the next time the course is given. This is however often already in the next study period, since the same labs are used for most other programs.

Exercise 7 is a computer exercise and booked in the same way as the labs. This exercise is not mandatory, though highly recommended, and the booking is only to even out the load between the groups.

<table>
<thead>
<tr>
<th>Lab</th>
<th>When</th>
<th>Signup</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>week 2–3*</td>
<td>week 1</td>
<td>Claudio Mandrioli</td>
</tr>
<tr>
<td>2</td>
<td>week 4–5</td>
<td>week 3</td>
<td>Harry Pigot</td>
</tr>
<tr>
<td>3</td>
<td>week 6–7</td>
<td>week 5</td>
<td>Mattias Fält</td>
</tr>
<tr>
<td></td>
<td>Ex. 7</td>
<td>week 2</td>
<td>Martina Maggio</td>
</tr>
</tbody>
</table>

* week stands for course week, not week of the year

4. Interactive Computer Tools

In order to facilitate the learning and understanding of some of the concepts used in the course there are interactive computer tools available for free download from aer.ual.es/ilm/

The module Modeling is suitable for studying model descriptions. At exercise 7 you have the opportunity for supervised use of this module in our lab facilities.

5. Literature

The course is covered by 4 compendia sold by KF:
Reglerteknik AK – Föreläsningar (Lectures)
Reglerteknik AK – Exempelsamling (Exercises and solutions)
Reglerteknik AK – Laborationer (Lab manual)
Reglerteknik – Formelsamling (Collection of formulae)

The last three compendia are also available for free download at www.control.lth.se. You are allowed to use the 'Formelsamling' on the exam.

For those interested in more reading we recommend Glad & Ljung: Reglerteknik — Grundläggande teori (Studentlitteratur 2006), Lennartson: Reglerteknikens grunder (Studentlitteratur 2002), or Åström & Murray: Feedback Systems: An Introduction for Scientists and Engineers (Princeton 2008), available for free at www.cds.caltech.edu/~murray/amwiki.

6. Exam

The written exam is 5 hours long. You may use 'Formelsamling', standard tables and calculators (not preprogrammed with e.g. Bode diagrams though). The grades are: fail, 3, 4 or 5.

The exam is on Wednesday March 19, 08–13 at MA 10 and MA 9A.
Weekly Program

Here is a weekly program with lectures=färeläsningar (F), exercises=Övningar (Ö), and labs.

<table>
<thead>
<tr>
<th>Vecka</th>
<th>Datum</th>
<th>Aktivitet</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>21 jan</td>
<td>F1: Course overview and intro to control. PID control. Lab 1.</td>
</tr>
</tbody>
</table>
| | 23 jan | F3: Impulse and stepresponse analysis
Ö1: Process models. Linearization.
| 5 | 28 jan | F4: Frequency analysis. Connections between model descriptions.
| | | LABORATION 1: Empirical investigation of two simple control problems. |
Ö5: PID-control. Lab 2.
Ö7: Computer exercise. |
| 6 | 6 feb | F8: State feedback control.
| 7 | 11 feb | F9: Kalman filtering.
Ö8: Stationary error. Sensitivity.
| | | LABORATION 2: Modeling and calculation of PID-controller parameters. |
| 8 | 18 feb | F11: Compensation in the frequency domain.
Ö11: Compensation in the frequency domain. |
| | 20 feb | F12: PID-control.
Ö11: Compensation in the frequency domain. |
Ö12: PID-control.
Ö13: Controller architectures. |
| | 27 feb | F14: Synthesis example.
Ö12: PID-control.
Ö13: Controller architectures. |
| | | LABORATION 3: Control of flexible servo. |
| 10 | 4 mar | F15: Repetition.
Ö14: Synthesis.
Ö15: Repetition. |
| 11 | 19 mar | 8–13 EXAM |
Department Offices

The Department offices are located in the M-building. Administrators are on the 5th floor. The course lab is on the bottom floor southwest wing. We also have facilities on floor 2, 3, and 5. For more information about the department see http://www.control.lth.se

Phone and addresses

<table>
<thead>
<tr>
<th>Name</th>
<th>Telephone</th>
<th>Floor</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mika Nishimura (Ladok etc)</td>
<td>2228785</td>
<td>5th floor</td>
<td>mika.nishimura@control.lth.se</td>
</tr>
<tr>
<td>Pontus Giselsson</td>
<td>222 97 44</td>
<td>2nd floor</td>
<td>pontusg@control.lth.se</td>
</tr>
<tr>
<td>Anders Robertsson</td>
<td>222 87 90</td>
<td>2nd floor</td>
<td>anders.robertsson@control.lth.se</td>
</tr>
<tr>
<td>Mattias Fält</td>
<td>222 08 47</td>
<td>2nd floor</td>
<td>mattias.falt@control.lth.se</td>
</tr>
<tr>
<td>Jacob Gummesson Atroshi</td>
<td></td>
<td></td>
<td>ja6213at-s@student.lu.se</td>
</tr>
<tr>
<td>Sverre Knutsen</td>
<td></td>
<td></td>
<td>tna13skn@student.lu.se</td>
</tr>
<tr>
<td>Harry Pigot</td>
<td></td>
<td></td>
<td>harry.pigot@control.lth.se</td>
</tr>
<tr>
<td>Magnus Svensson</td>
<td></td>
<td></td>
<td>tfy15msv@student.lu.se</td>
</tr>
</tbody>
</table>

Exercises

E= Done on exercise. H = Suggested home exercises/repetition for exam

- **E1** Process models. Linearization.
 - E: 1.1, 1.2, 1.7
 - H: 1.5a-c, 1.6, 1.9

- **E2** System representations. Block diagrams.
 - Ö: 2.1, 2.14ab, 2.15
 - H: 2.2ab, 2.16ab

- **E3** Poles, zeros, step- and impulse response.
 - Ö: 2.5, 2.9, 2.11, 2.13
 - H: 2.6

- **E4** Frequency analysis. Bode- and Nyquist diagrams.
 - Ö: 3.1, 3.2, 3.4bd, 3.5b, 3.7
 - H: 3.4ac, 3.5a, 3.6

- **E5** PID-control. Lab 2.
 - Ö: 4.1, Förberedelseuppgifter 3.1 och 3.6 i Lab 2, 4.9
 - H: 6.3, 6.4

- **E6** Nyquist criterion. Stability margins
 - Ö: 4.13, 4.15, 4.17, 4.18
 - H: 4.12, 4.14, 4.19

- **E7** Computer exercise.
 - Ö: 9.1, 9.2, 9.3

- **E8** Stationary error. Sensitivity.
 - Ö: 4.11, 4.2, 4.6, 4.7, 4.4
 - H: 4.3, 4.5

- **E9** State feedback. Controllability.
 - Ö: 5.5, 5.8, 5.10, 5.11
 - H: 5.2, 5.6

- **E10** Kalman filtering. Observability. Lab3.
 - Ö: 5.3, 5.12, 5.9
 - H: 5.13

- **E11** Compensation in frequency domain.
 - Ö: 6.11, 6.12, 6.13, 6.14
 - H: 6.15

- **E12** PID-control.
 - Ö: 6.5, 6.2, 6.7, 6.8
 - H: 6.6, 6.9

- **E13** Controller architectures.
 - Ö: 7.1, 7.6, 7.8, 7.9
 - H: 7.2, 7.5

- **E14** Synthesis example.
 - Ö: 8.1
 - H: 8.2

- **E15** Repetition.