
Institutionen för

REGLERTEKNIK

Automatic Control, Basic Course FRTF05

Exam 08 April 2021, 08:00–13:00

Points and grades
All solutions must be well motivated. The exam total is 25 points. The number of
points are presented after each problem.

Preliminary grades:

Grade 3: at least 12 points
4: at least 17 points
5: at least 22 points

Allowed aids
All course material, other material, and computer resources are allowed (including
lecture notes, exercise manual, Matlab, ...) but no collaboration or communication.

Results
Exam results are communicated via LADOK.
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1. A process is represented by the differential equation

2ÿ(t) + bẏ(t) + 8y(t) = 0.2u̇(t) + 10u(t).

a. For which values of b is the system asymptotically stable? (1 p)

b. For which values of b > 0 does the system have complex poles? (1 p)

c. Let b = 8. Sketch the Bode diagram of the system (both amplitude and phase
diagram). (2 p)

Solution

We start by dividing by 2 in order to get a monic characteristic polynomial.
Laplace transform then gives:

s2Y (s) + s
b

2Y (s) + 4Y (s) = s
1
10U(s) + 5U(s).

This gives the following transfer-function:

Y (s)
U(s) = 0.1s+ 5

s2 + 0.5bs+ 4 .

a. A system with characteristic polynomial s2 + a1s+ a2 is asymptotically stable
if a1 > 0 and a2 > 0. Thus the system is asymptotically stable ∀b > 0.

b. Solving s2 + 0.5bs+ 4 = 0 we get

s = − b4 ±

√
−4 + b2

16

Here it can be seen that imaginary poles are given when −4 + b2

16 < 0. Thus
|b| < 8 results in complex-valued poles.

c. For b = 8 the characteristic polynomial can be factorized as:

s2 + 4s+ 4 = (s+ 2)2

Giving the following transfer function:

G(s) = Y (s)
U(s) = 0.1 s+ 50

(s+ 2)2

Thus, for the Bode magnitude diagram we will have a slope of 0 for ω < 2, a
slope of -2 for 2 < ω < 50 and a slope of -1 for ω > 50. The low frequency gain
is given by G(0) = 5

4 = 1.25. The Bode phase diagram will start at 0◦ and hit
−90◦ for ω = 2. The phase will tend towards −180◦ but will not make it all
the way as the zero takes it back up to towards −90◦ for large ω. See Fig. 1.

2. The step response (after a unit step) for a system is shown in Figure 2. Tune a
PID-controller using the Lambda method with λ = T , whre T is the estimated
time constant. (2 p)
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Figur 1 Bode diagram for Problem 1c.
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Figur 2 Step response of the system in Problem 2.

Solution By drawing the tangent to the inflection point of the step response, an
approximation of the dead time is obtained, L ' 2.35. The step response has
reached 63 percent of its final value after approximately 3.85 seconds. The time
constant thus becomes T ' 3.85− 2.35 = 1.5. The static gain Kp = 1.5. With
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λ = T the PID controller parameters become

K = 0.66 Ti = 2.67 Td = 0.66

3. Match the following transfer functions with their Nyquist plot in Figure 3.
Motivate your answers. (2 p)

G1(s) = s+4
(s+2)2 G2(s) = 2e−s

s+1
G3(s) = 4

(s+1)(s+2)2 G4(s) = 2
s(s+2)

Solution
G1: The phase has to start at 0◦ and end at −90◦, as at very large frequencies,
we get −180◦ contribution from the denominator and +90◦ contribution from
the numerator. So, G1 matches with F .
G2: Because of the delay, we should see a spiral curve in the Nyquist plot.
Since we don’t have an integrator in the transfer function, the starting angle
should be 0◦. Moreover, at zero frequency the magnitude has to be 2. So G2
corresponds to A.
G3: It is a third order system (without integrator), so the phase should start
at 0◦ and end at −270◦ (tangent to imaginary axis). G3 matches with B.
G4: Because of the integrator in the transfer function, the curve should start
at −90◦ and we don’t have delay in the transfer function, so we don’t expect
a spiral in the Nyquist plot. Hence, G4 corresponds to C.

4. Consider the differential equation

ÿ + (y + 1)ẏ + y2 = u.

a. Introduce the state variables x1 = y and x2 = ẏ and write the system dynamics
in state space form. (1 p)

b. Find all stationary points, (x∗1, x∗2, u∗), for the system. (1 p)

c. Linearize the system around the stationary point where x∗1 = 2 . (2 p)

Solution

a. Introducing x1 = y and x2 = ẏ, we get the following state-space representation:

ẋ1 = x2 := f1(x1, x2, u)
ẋ2 = −(x1 + 1)x2 − x2

1 + u := f2(x1, x2, u)
y = x1 := g(x1, x2, u)

b. All points where ẋ1 = 0, ẋ2 = 0 and u̇ = 0 are stationary points. Inserting into
the state space equations yields{

0 = x∗2

0 = −(x∗1 + 1)x∗2 − (x∗1)2 + u∗
⇔
{
x∗2 = 0
(x∗1)2 = u∗

⇔
{
x∗2 = 0
x∗1 = ±

√
u∗

Thus, x∗2 has to be zero for any stationary point and x∗1 = ±
√
u∗, so u∗ must

be nonnegative.
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Figur 3 The Nyquist plots for Problem 3.

c. Setting x∗1 = 2 implies u∗ = 4 and introducing x = (x1, x2) and f = (f1, f2),
Taylor expansion yields

ẋ = f(x, u) ≈ f(x∗, u∗) + ∂f(x∗, u∗)
∂x

(x− x∗) + ∂f(x∗, u∗)
∂u

(u− u∗)

y = g(x, u) ≈ g(x∗, u∗) + ∂g(x∗, u∗)
∂x

(x− x∗) + ∂g(x∗, u∗)
∂u

(u− u∗)

where
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f(x∗, u∗) =
[
f1(x∗, u∗)
f2(x∗, u∗)

]
=
[

0
0

]
, g(x∗, u∗) = x∗1 = y∗ = 2

and

∂f(x∗, u∗)
∂x

=

 ∂f1(x∗,u∗)
∂x1

∂f1(x∗,u∗)
∂x2n

∂f2(x∗,u∗)
∂x1

∂f2(x∗,u∗)
∂x2

 =
[

0 1
−x∗2 − 2x∗1 −x∗1 − 1

]
=
[

0 1
−4 −3

]

∂f(x∗, u∗)
∂u

=
[ ∂f1(x∗,u∗)

∂u

∂f2(x∗,u∗)
∂u

]
=
[

0
1

]
∂g(x∗, u∗)

∂x
=
[ ∂g(x∗,u∗)

∂x1
∂g(x∗,u∗)

∂x2

]
= [ 1 0 ]

∂g(x∗, u∗)
∂u

= 0

Introducing also ∆x = x− x∗, ∆y = y − y∗ and ∆u = u− u∗, we get ∆̇x = ẋ.
The linearized state space equations can be written as:

∆̇x =
[

0 1
−4 −3

]
∆x+

[
0
1

]
∆u

∆y = [ 1 0 ] ∆x.

5. We consider the following system

ẋ =
[
−2 1
0 −3

]
x+

[
0
2

]
u

y = [ 1 0 ]x.

a. Assume that the system is initiated at x(0) = (3, 7)T and that the control
signal is the zero constant, u(t) = 0. Will x(t) → 0 as t → ∞? Motivate your
answer. (1 p)

b. Assume that the system is initiated at x(0) = (0, 0)T . Is it possible to choose
control signal u(t) (not necessarily constant) so that x(τ) = (3, 7)T at some
finite point in time τ > 0? Motivate your answer. (1 p)

c. Suppose that we can measure all both states x1 and x2 and that we want to
control the system using u(t) = −l1x1 − l2x2 + lrr for some constants l1, l2,
and lr. Decide l1, l2 and lr so that the closed loop system, that is the system
from reference r to measurement y, has two poles in s = −3 and static gain of
1. (3 p)

Solution

a. Yes. The eigenvalues for A are λ = −2,−3. This means that that the poles
are s = −2,−3. Therefore, the system is asymptotically stable. This implies
that for an arbitrary initial x(0) we will have x(t)→ 0 as t→∞ if u(t) = 0.
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b. Yes. That a system is controllable means that if it is initiated x(0) a control
signal u(t) can be chosen such that an arbitray state x(τ) can be reached at a
finite time τ . The controllability matrix is

Ws = [B AB ] =
[

0 2
2 −6

]
.

It has two linearly independent columns, which implies that Ws has full rank
and that the system is controllable.

c. The system is

ẋ =
[
−2 1
0 −3

]
x+

[
0
2

]
u = Ax+Bu

y = [ 1 0 ]x = Cx

(1)

We want to design a state feedback so that u(t) = lrr(t) − Lx(t), with L =
[ l1 l2 ], so that the closed loop system (from r to y) has characteristic poly-
nomial

(s+ 3)2 = s2 + 6s+ 9. (2)

Inserting the control law into (1) gives closed loop system

ẋ = (A−BL)x+Blrr

y = Cx.

The poles are the eigenvalues to A − BL, which are given by zeros to the
characteristic polynomial

p(s) = det(sI − (A−BL)) = det
([

s 0
0 s

]
−
[
−2 1
0 −3

]
+
[

0
2

]
[ l1 l2 ]

)

= det
[
s+ 2 −1
2l1 s+ 3 + 2l2

]
= s2 + (5 + 2l2)s+ 6 + 4l2 + 2l1.

By matching with (2), we get{
5 + 2l2 = 6
6 + 2l1 + 4l2 = 9

⇔
{
l1 = 1/2
l2 = 1/2

.

The static gain is given by G(0). The transfer function for the closed loop
system is

G(s) = C(sI − (A−BL))−1Blr = [ 1 0 ]
[
s+ 2 −1

1 s+ 4

]−1 [ 0
2

]
lr.

We get

G(0) = [ 1 0 ]
[

2 −1
1 4

]−1 [ 0
2

]
lr = [ 1 0 ] 1

9

[
4 1
−1 2

] [
0
2

]
lr = 2lr

9 ,

and the requirement that the static gain should be 1, G(0) = 1, is satisfied if
lr = 9/2.
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Figur 4 Block diagram for Problem 6.

6. A process Gp(s) consists of two components, so that Gp(s) = G2(s)G1(s). We
want to control this process with one controller Gr(s). Load disturbances can
occur either before the first component G1(s) or between the two components
G1(s) and G2(s). The block diagram for the closed loop system is shown in
Figure 4. Suppose that we select a PD-controller with Td = 1/K and a K that
satisfies 0 < K < 1 and that the system components then are

Gr(s) = K + s, G1(s) = 1
s(s+ 1) , G2(s) = 1

s
.

We also suppose that the reference signal r(t) = 0 for all times t.

a. Find the transfer function from load disturbance l1 to measurement y. (1 p)

b. Find the transfer function from load disturbance l2 to measurement y. (1 p)

c. What is y(t) as t→∞ if l1(t) is a unit step and l2(t) = 0? (1 p)

d. What is y(t) as t→∞ if l1(t) = 0 and l2(t) = t? (1 p)

e. What is y(t) as t→∞ if l1 = sin t and l2 = 0? (Remember that 0 < K < 1.)
(2 p)

Solution

a. We can set the other external signals to zero, i.e., r = 0 and l2 = 0. We get

Y (s) = G2(s)G1(s)[L1(s)+Gr(s)(−Y (s))]⇒ Y (s) = G2(s)G1(s)
1 +G2(s)G1(s)Gr(s)L1(s),

and the transfer function is

Y (s)
L1(s) = G2(s)G1(s)

1 +G2(s)G1(s)Gr(s) = 1/(s2(s+ 1))
1 + (K + s)/(s2(s+ 1)) = 1

s3 + s2 + s+K
.

b. We can set r = 0 och l1 = 0. We get

Y (s) = G2(s)[L2(s)+G1(s)Gr(s)(−Y (s))]⇒ Y (s) = G2(s)
1 +G2(s)G1(s)Gr(s)L2(s),

and the transfer function is

Y (s)
L2(s) = G2(s)

1 +G2(s)G1(s)Gr(s) = 1/s
1 + (K + s)/(s2(s+ 1)) = s(s+ 1)

s3 + s2 + s+K
.
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c. That l1 is a unit step implies that L1(s) = 1
s . The final value theorem gives

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

s
G2(s)G1(s)

1 +G2(s)G1(s)Gr(s)
1
s

= lim
s→0

1
s3 + s2 + s+K

= 1
K
.

This can be applied since the pole polynomial s3 + s2 + s + K has positive
coefficients and satisfies a1a2 = 1 · 1 > a3 = K.

d. That l2(t) = t implies that L2(s) = 1
s2 . The final value theorem gives

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

s
G2(s)

1 +G2(s)G1(s)Gr(s)
1
s2 = lim

s→0

s+ 1
s3 + s2 + s+K

= 1
K
.

This can be applied since the pole polynomial s3 + s2 + s + K has positive
coefficients and satisfies a1a2 = 1 · 1 > a3 = K.

e. That l1(t) = sin t implies that L1(s) = 1
s2+1 . We get

sY (s) = s
G2(s)G1(s)

1 +G2(s)G1(s)Gr(s)
1

s2 + 1 = s

(s3 + s2 + s+K)(s2 + 1) .

The factor (s2 + 1) in the pole polynomial implies two poles on the imagina-
ry axis. The system is not asymptotically stable and the final value theorem
cannot be applied.
We do know that a linear system with sinusoidal input always has a sinusoidal
output with the same frequency ω, but amplitude multiplied by |G(iω)| and
phase shift given by argG(iω). In this case, we get

G(iω) = 1
(iω)3 + (iω2) + iω +K

= 1
K − ω2 + i(ω − ω3) .

Inserting ω = 1 gives G(i1) = 1/(K − 1), and the output is

y(t) = |G(i1)| sin(t+ argG(i1)) = 1
|K − 1| sin(t− π) = 1

K − 1 sin t,

since K < 1.

7. Consider the following transfer function

G(s) = Ke−s

s(s+ 2) .

Assume that we close the loop with the feedback gain of −1 (which gives a
closed loop transfer function of Gcl(s) = G(s)

1+G(s)). Following the steps below,
find an upper bound K̄ > 0 for which all K satisfying 0 < K < K̄ gives a
stable closed loop system.

a. Find the expressions that describes the phase and magnitude of G(iω), that is
argG(iω) and |G(iω)|. (0.5 p)

b. Find ω0 such that argG(iω0) = −π. (Hint: You can use Matlab to solve the
resulting non-linear algebraic equation). (0.5 p)

9



c. Find K such that |G(iω0) = 1. (0.5 p)

d. Based on c, find an upper bound K̄ > 0 for which all K satisfying 0 < K < K̄
gives a stable closed loop system. (0.5 p)

Solution

a. The expression that describes the phase of G(iω) is

argG(iω) = −π2 − tan−1(ω2 )− ω

and the expression that describes the magnitude of G(iω) is

|G(iω)| = K

ω
√

4 + ω2

b.

argG(iω0) = −π2 − tan−1(ω0
2 )− ω0 = −π

⇒ ω0
2 = tan(π/2− ω0) ⇒ ω0 = 1.077rad/s

c.

|G(iω0)| = K

ω0
√

4 + ω2
0

= 0.4088K = 1 ⇒ K = 2.4465

d. The Nyquist curve cuts (-1,0) for the first time at K = 2.4465. Since no poles
are in the right half plane and the pole in the origin is unique, the Nyquist
criterion implies that K̄ = 2.4465.
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