
Institutionen för

REGLERTEKNIK

Automatic Control, Basic Course FRTF05

Exam October 23, 2017, 8–13

Points and grades
All solutions must be well motivated. The whole exam gives 25 points. The number
of points are presented after each problem. Preliminary grades:

Betyg 3: 12 points
4: 17 points
5: 22 points

Aids
Mathematical collections of formulae (e.g. TEFYMA), collections of formulae in
automatic control, and calculators that are not programmed in advance.

Results
The results are presented through LADOK. Time and place for exam presentation
will be announced on the course web page.

Good luck!
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Figur 1 Inverted pendulum.

1. A system is given by the following transfer function

G(s) = s+ 2
s2 + 4s+ 5

a. Is the system asymptotically stable? (0.5 p)

b. Write the system on controllable state-space form. (0.5 p)

c. Write a differential equation describing the system. (1 p)

d. Introduce the states x1 = y, x2 = ẏ − u and write the system on state-space
form. (1 p)

2. An inverted pendulum on a cart according to Figure 1 is described by the
differential equation

`ϕ̈− g sinϕ = −u cosϕ, (1)
where ϕ is the angle of the pendulum defined in the figure, ` > 0 is the length
of the pendulum, g > 0 is the gravity acceleration, and u = z̈ is the acceleration
of the cart which is the control signal (input signal).

a. Introduce the angle and the angular velocity as states: x1 = ϕ och x2 = ϕ̇ and
write the nonlinear system (1) on state-space form. The angle ϕ is chosen as
measurement signal (output signal). (1 p)

b. Verify that (x1, x2, u) = (0, 0, 0) is a stationary point and linearize the system
at this point. (2 p)

3. After many complaints about cold student houses during the winter season,
the responsible have decided to recruit you as a consultant to investigate the
problem. The indoor temperature can be modelled by the differential equation

ẏ(t) = −αy(t) + βu(t),

where y(t) is the temperature deviation (given in ◦C) from the reference tem-
perature 20 ◦C (i.e. y(t) = T (t)−20 ◦C, where T (t) is the indoor temperature).
The input signal u(t) consists of two parts: u(t) = u1(t) + γu2(t), where u1(t)
is the heat from the radiators and u2(t) is the outdoor temperature given as
deviation from the mean value 15 ◦C.

2



GR GPΣ

`

r

−1

e
Σ

y

Figur 2 The simple feedback loop.

a. Determine the transfer function GP (s) from input u(t) to temperature y(t).
(0.5 p)

b. You are informed that the temperature control is made using a simple feedback
according to Figure 2, where `(t) = γu2(t) is the influence from the outdoor
temperature and the controller output is u1(t). You discover that the controller
GR(s) that is used is a simple P controller: GR(s) = K. Determine the two
transfer functions Gry(s) and G`y(s) from reference r(t) to process output y(t)
and from load disturbance `(t) to process output y(t), respectively. (1 p)

c. When the outdoor temperature is decreased by 5 ◦C from the mean 15 ◦C, a
load disturbance occurs that can be described as

`(t) =
{

0, t < 0
−5γ, t ≥ 0

. (2)

Determine the stationary change in the indoor temperature, i.e.. y(t) when
t→∞ (we assume that r(t) = 0), that results from this disturbance. Assume
that α = 8, β = 4, K = 2 and γ = 2. (1 p)

d. You suggest that the P controller is replaced by the PI controller

u(t) = K

(
e(t) + 1

Ti

∫ t

0
e(τ) dτ

)
,

where K > 0 and Ti > 0. The other parameter values are the same as before.
Determine the transfer function G`y(s) from `(t) to y(t) and determine the
stationary value of the process output y(t) when r(t) = 0 and the load distur-
bance is given by (2). (1.5 p)

4. An electric motor used to control a robot arm can be described by

ẋ =
[

0 1
0 −4

]
︸ ︷︷ ︸

A

x+
[

0
2

]
︸︷︷ ︸

B

u

y = [ 1 0 ]︸ ︷︷ ︸
C

x,

where x1 is the motor angle, and also process output y, x2 is the angular
velocity of the motor, and control signal u is the current to the motor.
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a. To have to robot arm moving as we want, we need a good controller. We choose
to let the control signal be a linear combination of the states and the reference
signal, i.e.

u = `rr − Lx, (3)

where `r and L = [ `1 `2 ] are design parameters that we have to determine.
We want the characteristic polynomial of the closed-loop system, i.e. the system
that is controlled by our controller and has r as input, to be

p1(s) = s2 + 2ζωs+ ω2, (4)

for some given values of ω and ζ. Determine parameters `1 and `2 (expressed
using ω and ζ) so that the closed-loop system gets the characteristic polynomial
(4). (2 p)

b. Determine `r so that the static gain between r and y becomes 1. (1 p)

c. To use our controller, we must know the values of the state variables x1 and
x2, but the only signals available are u och y. Using a Kalman filter

˙̂x = Ax̂+Bu+K(y − ŷ)
ŷ = Cx̂,

where K = [ k1 k2 ]T are design parameters, we get estimates x̂1 and x̂2 of
the state variables x1 och x2. We assume that the polynomial (4) has the
values ζ = 0.25 and ω = 2. To obtain a state estimation that is faster than
the dynamics of the closed-loop system, we want the characteristic polynomial
of the Kalman filter to have poles with the double distance from the origin.
Therefore we choose ω = 4 and

p2(s) = s2 + 2s+ 16. (5)

Determine the values of k1 and k2 so that the estimation error x̃ = x − x̂
declines according to the characteristic polynomial (5). (2 p)

d. Vad kan det finnas för problem med att, för en verklig process, välja det ka-
rakteristiska polynomet (5) för skattningsfelet så att felet avtar väldigt snabbt,
d.v.s. vilken avvägning måste göras i valet av snabbheten för Kalmanfiltret?

(1 p)

5. A process that is disturbed by a load disturbance v according to Figure 3 is to
be controlled. The goal is to design controllers R1 and R2 so that the process
output y follows the reference r well.

a. Determine the transfer functions to y from r and v, respectively. (1 p)

b. How should R1 and R2 be determined in order to eliminate the effects of the
load disturbance on the process output? Are these choices always useful in
practice? (1 p)
The system is given by P1 = 1

s+4 and P2 = 1
s , and it is desired to control it

using proportional controllers R1 = K1 and R2 = K2.
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c. Determine K1 so that the closed-loop system gets a double pole in −2. (1 p)

d. Determine K2 so that constant load disturbances are eliminated. (1 p)

Σ R1 Σ P1 Σ P2

−1

R2

r y

v

Figur 3 Block diagram for Problem 5

6. We want to control a process given by

GP (s) = 3
(s+ 4.4)2

and decide to use a PI controller

GR(s) = K

(
1 + 1

sTi

)
.

The closed-loop system is shown in Figure 4. If the integral time is chosen to
be Ti = 1/37, the loop transfer function becomes

G0(s) = GP (s)GR(s) = 3K(s+ 37)
s(s+ 4.4)2 .

The Bode plot for G0(s) when K = 1 is presented in Figure 5.

a. Use the Bode plot to determine the largest value of K that can be used in
order to keep the closed-loop system stable. (1 p)

b. Assume that K = 1 and that a deadtime is added to the loop transfer function
G0(s). Use the Bode plot to determine how long this deadtime may be without
causing instability. (1 p)

c. We now want to modify the controller so that the closed-loop system becomes
faster, still retaining a desired robustness. Therefore, we replace the PI con-
troller with the controller

GR(s) = K

(
1 + 1

sTi

)
GK(s),

where GK(s) is a transfer function that is to be determined. We assume once
again that K = 1, Ti = 1/37, and that no deadtime is present. To make the
closed-loop system faster, the cross-over frequency of the loop transfer function
is to be increased, and to obtain the desired robustness a certain phase margin
is specified. Determine GK(s) so that the cross-over frequency becomes 5 rad/s
and the phase margin 30◦. (3 p)
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Figur 4 The feedback loop in Problem 6.
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Figur 5 The Bode plot of the loop transfer function in Problem 6.
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