
7 Lecture 7. Dynamic programming II

7.1 Policy iteration

In previous lecture, we studied dynamic programming for discrete time systems based on Bellman’s
principle of optimality. We studied both finite horizon cost

J = φ(xN) +

N−1∑
k=1

Lk(xk, uk), uk ∈ Uk

and infinite horizon cost

J =

∞∑
k=1

L(xk, uk), uk ∈ U(xk).

The key ingredients we obtained were the Bellman equations. For finite horizon,

J∗
k (x) = min

u∈Uk

{Lk(x, u) + J∗
k+1(f(x, u))}

with boundary condition
J∗
N (x) = φ(x)

and for infinite horizon,
J∗(x) = min

u∈U
{L(x, u) + J∗(f(x, u))}.

The finite horizon Bellman equation can be solved backward. While for infinite horizon one, nor-
mally explicit solution cannot be obtained. In practice, one uses iteration approaches to approximate
the solution. There are mainly two types of iteration approaches, namely, value iteration and policy
iteration. In previous lecture, we studied value iteration, which starts with an initial function J0 and
updates according to

Jk+1(x) = min
u∈U(x)

{L(x, u) + Jk(f(x, u))}.

uk ∈ arg min
u∈U(x)

{L(x, u) + Jk(f(x, u))}.

The following proposition can be used to guarantee convergence of the algorithm. For proof, see [1].

Proposition 1 (Convergence of value iteration I). If U is a metric space and the sets

Uk(x, λ) = {u ∈ U(x) : L(x, u) + Jk(f(x, u)) ≤ λ}

is compact for all x ∈ X, λ ∈ R and k, then the value iteration Jk ↑ J∗ pointwisely for any J0 ≥ 0
satisfying J0(x) ≤ minu∈U(x) L(x, u) + J0(f(x, u)) for all x ∈ X, e.g., J0 = 0.

Now let’s study policy iteration. PI starts from a policy u1(·) – stablizing – then solve

Jk(x) = L(x, uk(x)) + Jk(f(x, uk(x))) (1)

for Jk(·). Next, iterate uk(·) according to

uk+1(x) ∈ arg min
u∈U(x)

{L(x, u) + Jk(f(x, u))}. (2)

The main result of policy iteration that we are going to prove is the following.

Proposition 2. Let Assumption 1 (see Lecture note 6) hold. A sequence {Jk} generated by the policy
iteration algorithm (1), (2) satisfies Jk(x) ↓ J∗(x) for every x ∈ X.

(Proof sketch) We study the relation between J1 and J2: since

J1(x) = L(x, u1(x)) + J1(f(x, u1(x)),

by definition of u2(·), we have

J1(x) ≥ L(x, u2(x)) + J1(f(x, u2(x))

1

Let x1 = x and x2, · · · be the sequence under policy u2, then

J1(x) ≥ L(x1, u2(x1)) + J1(x2)

≥ L(x1, u2(x1)) + L(x2, u2(x2)) + J1(f(x2, u2(x2))

...

≥
N−1∑
i=0

L(xi, u2(xi)) + J1(f(xN , u2(xN))

...

≥
∞∑
i=1

L(xi, u2(xi))

= J2(x)

(by assuming J1 ≥ 0) By the way, we also notice that Jk ≥ J∗ for all k. Thus we conclude that
J1 ≥ J2. Repeating the procedure, we get

J1 ≥ J2 ≥ · · · ≥ Jk ≥ · · · ≥ J∗.

So the PI algorithm generates a decreasing sequence. To show that there is no gap, one needs assump-
tion 1.

7.2 Continuous time dynamic programming

In this section, we begin to study dynamic programming for continuous time systems:

ẋ = f(x, u),
x(t0) = x0

(3)

where x(t) ∈ X ⊆ Rn, u(t) ∈ Ut ⊆ Rm and u(·) ∈ U , and U is called the space of admissible control
input. To avoid pathological cases, we assume that the solution to this equation exists and is unique
for each u(·) ∈ U . When the initial condition is clear from the context or is not important to us, we
simply write x(t) as the solution to system. If however we want to highlight the initial condition, we
may write x(t, x0) (when the initial time instant is unimportant) or x(t; t0, x0). If, further more, we
want to include the input, we can write x(t; t0, x0, u) for u ∈ U .

We consider cost functions in Bolza form

J(u(·)) = φ(x(T)) +

∫ T

0

L(x(s), u(s))ds (4)

where φ and L are both non-negative functions. Likewise, we can consider infinite horizon cost

J(u(·)) =
∫ ∞

0

L(x(s), u(s))ds

As before, the objective of optimal control is to seek for an admissible control u∗(·) such that

u∗(·) ∈ argmin
u∈U

J(u(·)). (5)

To apply Bellman’s principle, as before, we define cost-to-go and value functions. Again, these
are done by simply changing the summation to integration in the discrete time setting. In words, the
cost-to-go function from t = s with x(s) = y to T is

J(s, y;u(·)) := φ(x(T)) +

∫ T

s

L(x(t), u(t))dt,

and the value function is defined as the optimal value of the cost-to-go under admissible control on
the interval [s, T]:

J∗(s, y) := min
u(·)∈U|[s,T]

J(s, y;u(·)). (6)

2

Here, the set U|[s,T] is the set of admissible controls that can be implemented on the interval [s, T].
More rigorously, U|[s,T] = {u1[s,T] : u ∈ U}, where 1[s,T] stands for the characteristic function of the
set [s, T].

Recall that the Bellman principle says: an optimal policy has the property that no matter what the
previous decision have been, the remaining decisions must constitute an optimal policy with regard to
the state resulting from those previous decisions. Thus for any time instant r, there must hold

J∗(s, y) = min
u(·)∈U|[s,r]

{∫ r

s

L(x(t; s, y, u), u(t))dt+ J∗(r, x(r; s, y, u)

}
, ∀r ∈ [s, T]. (7)

This equation looks too implicit and is hard to use in practice. The main task now is to derive the
celebrated Hamilton-Jacobi-Bellman equation based (7), a more tractable form than (7). The key is
to note that (7) is satisfied for all r ≥ s and hence one can take derivatives when J∗ are assumed to
be smooth.

On the one hand, for any give u ∈ U , and r > s, we have

J∗(s, y)− J∗(r, x(r; s, y, u))

r − s
− 1

r − s

∫ r

s

L(x(t; s, y, u), u(t))dt ≤ 0, ∀u ∈ U

Suppose that J∗ is continuously differentiable, and that L, u are continuous, then the above implies

−∂J∗

∂s
(s, y)− ∂J∗

∂y
(s, y)f(y, u(s))− L(y, u(s)) ≤ 0, ∀u(s) ∈ Us

resulting in

−∂J∗

∂s
(s, y) + sup

u∈Us

H

(
y, u,−∂J∗(s, y)

∂y

)
≤ 0. (8)

where
H(x, u, p) = p⊤f(x, u)− L(x, u) (9)

On the other hand, for any pair (r, ϵ), with r > s, ϵ > 0, there exists a control uε,r such that

J∗(s, y) ≥
∫ r

s

L(x(t, s, y, uε,r(·)), uε,r(t))dt+ J∗(r, x(r; s, y, uε,r))− ε(r − s)

or

−ε ≤ J∗(s, y)− J∗(r, x(r, s, y, uε,r)

r − s
− 1

r − s

∫ r

s

L(x(t, s, y, uε,r), uε,r(t), t)dt

= − 1

r − s

∫ r

s

[
∂J∗

∂s
(t, x(t, s, y, uε,r)) +

∂J∗

∂y
(t, x(t, s, y, uε,r)f(x(t, s, y, uε,r), uε,r(t))

]
dt

− 1

r − s

∫ r

s

L(x(t, s, y, uε,r), uε,r(t), t)dt

=
1

r − s

∫ r

s

[
−∂J∗

∂s
(t, x(t, s, y, uε,r) +H

(
x(t, s, y, uε,r), uε,r(t),−

∂J∗

∂y
(t, x(t, s, y, uε,r)

)]
dt

Let r → s+ while keeping ϵ fixed, we get

−ε ≤ −∂J∗

∂s
(s, y) +H

(
y, uε,r(s),−

∂J∗

∂y
(s, y)

)
≤ −∂J∗

∂s
(s, y) + sup

u∈Us

H

(
y, u,−∂J∗

∂y
(s, y)

)
(10)

Since ε is arbitrary, (10) and (8) together imply

−∂J∗

∂s
(s, y) + sup

u∈Us

H

(
y, u,−∂J∗

∂y
(s, y)

)
= 0, ∀s ∈ [0, T], ∀y ∈ X

or equivalently

∂J∗

∂s
(s, y) + inf

u∈Us

{
∂J∗

∂y
(s, y)f(y, u) + L(y, u)

}
= 0, ∀s ∈ [0, T], ∀y ∈ X

3

This is a partial differential equation with dependent variable (s, y). By the definition of value function
(see (6)), the PDE is accompanied with boundary condition

J∗(T, y) = φ(y), ∀y ∈ X.

Summarizing, we have:

Proposition 3. Suppose that J∗(s, x) defined as (6) is continuously differentiable. Then J∗(t, x) is a
solution to the following Hamilton-Jacobi-Bellman (HJB) PDE on [0, T]×X:

−Vt(t, x) + sup
u∈Ut

H (x, u,−Vx(t, x)) = 0, (11)

or its equivalent form
Vt(t, x) + inf

u∈Ut

{Vx(t, x)f(x, u) + L(x, u)} = 0, (12)

with boundary condition
V (t, x) = φ(x),

where H is defined in (11) and we have adopted the notations ∂V
∂t = Vt and

∂V
∂x = Vx.

Suppose that Ut = U for all t ≥ 0. To obtain the optimal control law based on the solution of the
HJB equation (11), we can follow Algorithm 1 (called the verification rule).

Algorithm 1 The verification rule

1. Solve the optimization problem

u∗(x, p) = arg sup
u∈U

H(x, u, p).

2. Find a continuously differentiable solution V (t, x) to

−Vt(t, x)+H (x, u∗(x,−Vx(t, x)),−Vx(t, x)) = 0, (13)

V (T, x) =φ(x),

for (t, x) ∈ (0, T]×X.

3. Then u∗(t,−Vx(t, x
∗(t))) is an optimal control and V (t, x) = J∗(t, x).

Example 1 (Double integrator). Consider the double integrator

ẋ1 = x2

ẋ2 = u

where |u| ≤ 1. The objective is to steer the system to the origin in minimum time, i.e.,

min

∫ tf

0

1dt.

The Hamiltonian function is
H(x, u, p) = p1x2 + p2u− 1.

Step 1:
u∗(t) = arg sup

u∈[−1,1]

(p1x2 + p2u− 1) = signp2(t).

Step 2: The HJB equation reads

−∂V

∂t
+H(x,−sign(

∂V

∂x2
),−∂V

∂x
) = 0

4

or
−Vt − Vx1x2 + |Vx2 | − 1 = 0.

Since there is no boundary cost, V (t, 0) = 0.
Step 3: after solving the HJB, the controller is obtained as

u = −signVx2

which is a feedback controller.

As the discrete time optimal control problem on finite horizon, solving the Bellman equation (11)
(when the solution has some regularities) is sufficient to obtain the optimal control. For continuous
problems, we have a similar result.

Proposition 4. If the verification rule Algorithm 1 admits a C1 solution V , then u∗ obtained from
the algorithm is an optimal control.

Proof. Let V be a C1 solution to the Bellman equation. Let u(·) be any admissible control and x(·)
the corresponding trajectory. Then for initial condition x0,

V (T, x(T))− V (t, x(t)) =

∫ T

t

dV (s, x(s))

ds
ds

=

∫ T

t

Vt(s, x(s)) + Vx(t, x(s))f(x(s), u(s))ds

≥
∫ T

t

−L(x(s), u(s))ds (use(12))

from which it follows that

V (t, x(t)) ≤ φ(x(T)) +

∫ T

t

L(x(s), u(s)ds.

The inequality becomes equality when x is taken to be x∗. Since u(·) is arbitrary, we conclude that
V (t, x) is the value function. On the other hand, it is readily checked that u∗ is a control that achieves
the optimal value.

Apparently, the most challenging part of the algorithm is the second step, i.e., solving a PDE of the
form F (x, v, vx) = 0. But even numerically solving the HJB is quite difficult, which normally causes
curse of dimensionality after discretization.

Method of characteristics

A well-known approach to solving PDE of the form

F (x, v, vx) = 0, x ∈ Ω ⊂ Rn. (14)

with boundary condition
v(x) = g(x), x ∈ ∂Ω,

is via the so-called method of characteristics. Here v is a real valued function and F is assumed to be
a continuous mapping from Rn ×R×Rn to R. In addition, we assume Ω to be compact with smooth
boundary.

The idea of the method of characteristics is to turn the first order PDE (14) into a set of ODEs.
Given a point y ∈ ∂Ω and a curve x : [0, 1] → Ω̄, with x(0) = y. We examine the values of v(x) along
this curve, see Figure 7.2.

Introduce the notation
(p1, · · · , pn)⊤ = (vx1 , · · · , vxn)

⊤.

For convenience, denote

v(s) =: v(x(s))

p(s) =: p(x(s)) = vx(x(s)).

5

U

T:O;

Figure 1: Method of characteristics.

Differentiating v and p w.r.t. s, we find

v̇ =

n∑
i=1

vxi ẋi =

n∑
i=1

piẋi

ṗi =

n∑
j=1

vxixj ẋi

where ẋi stands for the derivative of xi w.r.t. s. Further, differentiating (14) w.r.t. xi, we get

∂F

∂xi
+

∂F

∂v
vxi +

n∑
i=1

∂F

∂pi
vxixj = 0.

Now if the curve x(s) is chosen such that ẋi = ∂F/∂pi (this time, we call x a characteristic curve),
one can easily obtain the following

v̇ =

n∑
i=1

pi
∂F

∂pi
,

ṗi = − ∂F

∂xi
− ∂F

∂v
pi, i = 1, · · · , n

or in more compact form
ẋ = F⊤

p

v̇ = Fpp

ṗ = −F⊤
x − Fvp

(15)

The above equation is a system of ordinary differential equations with boundary condition

x(0) = y, v(0) = g(y), p(0) = vx(y)

for y ∈ ∂Ω. Thus by varying the initial condition y, we can obtain local solutions near ∂Ω of the PDE
(14). In general, however, the solution cannot be extend globally to the entire region Ω. For example,
when two characteristic curves meet in Ω, singularity occurs.

To solve the HJB using method of characteristics, we first need to write the equation (13) into the
standard form F (x, v, vx) = 0 for some F . For that, let xn+1 = t and x̃ = (x, xn+1). Then (13) can be
written as −vxn+1 +H(x, u∗(x, vx),−vx) = 0, or −vxn+1 + H̃(x, vx) = 0 for some scalar function H̃.
Let p̃ = (p1, · · · , pn, pn+1), then F takes the form

F (x̃, v, p̃) = −pn+1 + H̃(x, p).

Hence the first line of (15) reads

ẋ = F⊤
p = H̃⊤

p

ẋn+1 =
∂F

∂pn+1
= −1

(16)

6

Notice that ∂F/∂v = 0, the third line of (15) reads

ṗ = −H̃x

ṗn+1 = − ∂H̃

∂xn+1
= 0

(17)

and the second line of v̇ = p⊤H̃p − pn+1. In the above formulas, the only relevant ones are the first
lines of (16) and (17), i.e., {

ẋ = H̃⊤
p

ṗ = −H̃⊤
x

(18)

This is the Hamiltonian equation we have already met in PMP.
Notice all the previous derivations are based on the assumption that the value function is con-

tinuously differentiable. This is almost never met in practice. What’s worse, the HJB equation may
not have continuously differentiable solutions! This problem turns out be non-negligible and must be
handled with care. This is why we cannot derive the maximum principle from the HJB equation: the
regularity issue here is an essential difficulty.

7.3 Infinite horizon problems

Consider the time-invariant system {
ẋ = f(x, u)

x(0) = x0

with cost

J =

∫ ∞

0

L(x(t), u(t))dt

where L ≥ 0, u(t) ∈ U ⊆ Rm for all t ≥ 0. It is easy to notice that the value function in this case is
time independent and thus can be written as J∗(x). Further more, the HJB equation reads

sup
u∈U

H(x, u,−Vx) = 0

because J∗(t, y) = J∗(r, y) for all t, r. Here H(x, u, p) = p⊤f(x, u)− L(x, u), or equivalently

inf
u∈U

{Vxf(x, u) + L(x, u)} = 0. (19)

In the LQR setting, for the system
ẋ = Ax+Bu (20)

and cost

J =

∫ ∞

0

x⊤Qx+ u⊤Rudt (21)

the HJB equation (19) reads

inf
u∈U

{Vx(Ax+Bu) + x⊤Qx+ u⊤Ru} = 0

As before, choose V = x⊤Px, then the above formula turns into infu∈U{2x⊤P (Ax + Bu) + x⊤Qx +
u⊤Ru} = 0. The minimum on the left hand side is achieved at

u∗ = −R−1B⊤Px

with minimum zero if
A⊤P + PA+Q− PBR−1B⊤P = 0. (22)

This equation in P is called algebraic Riccati equation (ARE).
Recall that V (x0) = minJ , thus x⊤

0 Px0 is the optimal cost.

Proposition 5. Consider the LTI system (20) and cost function (21) with Q ≥ 0, R > 0. Assume
(A,B) is controllable, (A,C) is observable, where C is full row rank satisfying C⊤C = Q. Then the
ARE has a unique symmetric solution P which is positive definite. Further more, the optimal control
is given by a static state feedback u = −R−1B⊤Px and the optimal cost is x⊤

0 Px0.

Proof. The proof of this proposition is essentially the same as the discrete time case and is thus left
as an exercise.

7

References

[1] Dimitri P Bertsekas. Value and policy iterations in optimal control and adaptive dynamic pro-
gramming. IEEE transactions on neural networks and learning systems, 28(3):500–509, 2015.

8

