
6 Lecture 6. Final step of the proof of MP and a start of DP

6.1 The proof of the maximum principle (finally!)
In our previous lecture, we started proving the maximum principle for the Mayer problem

ẋ = f(x, u)

with cost
J = φ(x(tf))

under the constraint u(t) ∈ U , x(tf) ∈ M . The basic tool for the proof is the method of tent. To that
end, we defined the following tents:

Ω0 = {x1} ∪ {x : φ(x) < φ(x1)}
Ω1 : reachable set from x0

Ω2 = M : the terminal manifold

where x1 := x∗(tf). Let u∗(t), x∗(t), 0 ≤ t ≤ tf be an optimal process. Then we claimed that

Ω0 ∩ Ω1 ∩ Ω2 = {x1}. (1)

This condition, by Lemma 2, implies separability of tents of the three sets. Therefore, it suffices to
find the tents of the three sets. Denote Ki as the tents of Ωi at x1. The tents K0 and K2 can be easily
computed:

K0 = {x ∈ Rn : ∇φ(x1)(x− x1) ≤ 0}
K2 = Tx1

Ω2

(note that Ω2 is a fixed manifold).
Therefore, our problem boils down to finding a tent of Ω1 at x1: K1. By definition, a tent is only

a convex subcone of the tangent cone of Ω1 at x0. We should try to find a tent as big as possible,
since the bigger the tent, the more necessary information it conveys. For that, we introduced needle
variation of u∗ for small ε > 0:

uε(t) =

{
w, t ∈ (τ − ε, τ]
u∗(t), otherwise

where w ∈ U is some constant, see Figure 1.
Then we showed that

v(tf) =
∂xε(tf)

∂ε

∣∣∣∣
ε=0+

is a vector in the tangent cone of Ω1, which we call a deviation vector, where v(t) is a solution to the
following linear ODE: v̇ =

∂f

∂x
(x∗(t), u∗(t))v, ∀t ∈ [τ, tf]

v(τ) = f(x∗(τ), w)− f(x∗(τ), u∗(τ)).

Then we obtained as least one vector in the tangent cone of Ω1. Now, repeating the perturbation
at different time instants with different perturbation w, we can obtain many deviation vectors. Say
v1(tf), · · · , vr(tf) are some deviation vectors obtained through needle variations at time instants τ1 <
· · · < τr with inputs w1, · · · , wr. Then we showed the combined needle variation in Figure 2 generates
the deviation vector

r∑
i=1

kivi(tf) =
∂x(tf , uε,k)

∂ε

∣∣∣∣
ε=0+

If we define K1 to be the set of all deviation vectors of such form, i.e.,

K1 =


r∑

i=1

kivi(tf)

∣∣∣∣∣ ∃r ∈ Z+, τi ∈ [0, tf), wi ∈ U, ki ≥ 0,
vi(tf) the deviation vector obtained from needle
variation atτi with spike wi


1

𝑤𝑤

𝜏𝜏𝜏𝜏 − 𝜀𝜀

𝑢𝑢∗(𝑡𝑡)

Figure 1: Needle variation.

Figure 2: Combined needle variation

then we obtain a tent of Ω1 at x1.
Condition (1) implies that K0,K1,K2 are separable. Invoking Lemma 1 and Lemma 2, we deduce

that there exist three vectors ai, at least one of which is nonzero, satisfying

a⊤i v ≤ 0, v ∈ Ki, i = 0, 1, 2 (2)

and
a0 + a1 + a2 = 0. (3)

For a0, since K0 is a half space, a⊤0 v ≤ 0 for v ∈ K0 implies a0 = λ∇φ(x1)
⊤ for some constant λ ≥ 0.

For a1, we have a⊤1 v(tf) ≤ 0 for any deviation vector v(tf). We emphasize that a1 does not
depend on specific needle variation. Now we introduce a small trick: if we are able to construct some
function p : [0, tf] → Rn such that p(t)⊤v(t) ≡ constant with p(tf) = a1, then we obtain immediately
p(t)⊤v(t) = a⊤1 v(tf) ≤ 0 for all t ∈ [0, tf]. In other words, we propagate the inequality at the end
point to the previous time instants. This is easy, let us recall the following simple fact:

Lemma 1. Consider two linear ODE

ẋ = A(t)x

ṗ = −A(t)⊤p

where x, p ∈ Rn. Then p(t)⊤x(t) = p(t′)⊤x(t′) for any t, t′ ∈ R.

2

Now since A(t) = ∂f
∂x (x∗(t), u∗(t)), we have

ṗ = −
[
∂f

∂x
(x∗(t), u∗(t)

]⊤
p

with terminal condition p(tf) = a1.
Therefore, if v is a deviation vector obtained by needle variation at time τ with spike w, then

v(τ) = f(x∗(τ), w)− f(x∗(τ), u∗(τ)). Thus at t = τ , p(τ)⊤[f(x∗(τ), w)− f(x∗(τ), u∗(τ))] ≤ 0 or

p(τ)⊤f(x∗(τ), u∗(τ)) ≥ p(τ)⊤f(x∗(τ), w)) (4)

For convenience, define
H(x, u, p) := p⊤f(x, u)

which is the Hamiltonian associated with the system. Now that the spike can be any w ∈ U and
t ∈ [0, tf), it follows from (4) that

H(x∗(t), u∗(t), p(t)) = max
u∈U

H(x∗(t), u, p(t)), ∀t ∈ [0, tf). (5)

Now, for any t1 > τ ,

H(x∗(τ), u∗(τ), p(τ))−H(x∗(t1), u∗(t1), p(t1)) ≤ H(x∗(τ), u∗(τ), p(τ))−H(x∗(t1), w, p(t1))

for any w ∈ U . In particular, take w = u∗(τ), we have

H(x∗(τ), u∗(τ), p(τ))−H(x∗(t1), u∗(t1), p(t1)) ≤ H(x∗(τ), u∗(τ), p(τ))−H(x∗(t1), u∗(τ), p(t1))

Since H is C1 in x and u, we have

H(x∗(τ), u∗(τ), p(τ))−H(x∗(t1), u∗(t1), p(t1)) ≤ −Hxẋ∗(τ) +Hpṗ(τ) + o(|t1 − τ |)
= o(|t1 − τ |)

A reverse direction inequality can also be established. Therefore, H(x∗(τ), u∗(τ), p(τ)) is differentiable
at τ , and more precisely, its derivative vanishes, which happens only when H is constant. Thus we
can improve (5) to

H(x∗(t), u∗(t), p(t)) = max
u∈U

H(x∗(t), u, p(t)) = constant, ∀t ∈ [0, tf). (6)

This is the maximum principle that we have been looking for! Except two things: the interval [0, tf)
doesn’t include the endpoint tf and the function p hasn’t been determined yet. The first issue can be
fixed if everything is continuous in the above formula, which is indeed true as long as we have shown
p is, since f , x∗ and u∗ are continuous as assumed.

Now recall the equation of p, we can rewrite it as

ṗ = −H⊤
x (x∗, u∗, p) (7)

with terminal state p(tf) = a1 which is exactly the costate equation! However, a1 is something we
need to determine. Recall that

K0 = {x ∈ Rn : ∇φ(x1)(x− x1) ≤ 0}
K2 = Tx1Ω2

and a0 + a1 + a2 = 0. For a2, since K2 is a sub-manifold, a2 ⊥ K2. It follows from (3) that (recall
a1 = p(tf)):

λ∇φ(x∗(tf))
⊤ + p(tf) ⊥ Tx∗(tf)M (8)

for some constant λ ≥ 0. If λ > 0, then it is equivalent to p(tf) +∇φ(x∗(tf)) ⊥ Tx∗(tf)M by changing
a1 to λa1. As in many textbooks, we ignore the pathological case λ = 0.

Up to now, we have proven the maximum principle for the Mayer problem under the assump-
tion that u∗ is continuous. We can safely extend to the case when u is only piecewise continuous
(more generally, measurable is enough) and modify the maximum principle to hold almost everywhere.
Summarizing, we have proved the following.

Theorem 1. Suppose that the Mayer form optimal control problem admits a piecese-continuous optimal
law u∗(·) with corresponding trajectory x∗(·). Then there is a solution to the costate equation (7), such
that the triple (x∗(t), u∗(t), p(t)) satisfies the maximum principle (6) for almost all t (all t on the
interval on which u∗(·) is continuous) and the transversality condition (8).

3

Discussions
• We have so far considered the optimal control problem under the condition that tf is fixed. It

can be easily extended to the case of free terminal time: it is obvious that all the necessary
conditions of Theorem 1 still need to hold. The mere difference is that now one can also make
the variation of the terminal time. For example, consider a needle variation at τ , let v(tf) be
the corresponding deviation vector. Fix some µ > 0, since xϵ(tf + ϵµ) ∈ Ω1,

∂xε(tf+εµ)
∂ε

∣∣∣
0+

must
also lie in the tangent cone of Ω1.

• As we said, the problem in Bolza form can be reduced to Mayer form, so in fact we have proved
the general form of the maximum principle. We left the derivation as an exercise.

6.2 Dynamic programming
In the rest of the time, we will start learning another approach to optimal control, i.e., dynamic
programming. The good news is that dynamic programming is much easier to understand than the
maximum principle. In particular, if you work with discrete time control systems, the only knowledge
you need to know is high school algebra, maybe some linear algebra if you deal with multi-dimensional
systems. The bad news is that for some problems, especially for continuous time systems, the dynamic
programming is quite hard to solve, where normally you have to solve a partial differential equations.
This is not the case for the maximum principle. We will come back to this issue later.

6.2.1 Shortest path problem

To understand dynamic programming, perhaps it is best to start with the shortest path problem. The
following directed graph (Figure 3) shows some possible paths connecting a starting point F to a target
T . The number on each arrow indicates the cost walking from one node to the other, and the total
cost is the sum of the costs of all moves. The objective is to find the path connecting F to T which
has the minimal cost.

𝐹𝐹 𝑇𝑇
2

1

1

1

2

3
2

1

2

1

3

3

2

1

Figure 3: Shortest path problem.

A naive solution to this problem is via enumeration. That is, find all the paths connecting F to
T , compute the cost of each path, and select the path with the minimal cost. For a problem with N
layer (stage) and m states, there are mN−2 possible paths, and on each path, one has to do addition
operation for N − 1 times. That is, one has to do at least (N − 1)mN−2 addition operations, which
grows exponentially fast as the number of stages increases. Even for small m, this is not realistic since
in practice, N is usually very large.

Dynamic programming can be seen as an algorithm that can reduce the computational loads based
on the celebrated Bellman’s principle of optimality:

Bellman’s principle of optimality

An optimal policy has the property that no matter what the previous decisions have been, the
remaining decisions must constitute an optimal policy with regard to the state resulting from
those previous decisions.

4

This principle is almost obvious and that no proof is needed, although rigorous proof is not hard to
provide. This principle not only holds for discrete time systems, it holds also for continuous systems,
stochastic systems, systems described by PDEs and so on.

Now let’s apply it to our shortest path problem and see what it gives us. Denote Ji(x) the cost-
to-go function from state x at stage i to stage N , N (x) the set of neighbours of x at the next stage
and c(x, y) the cost going from state x (at stage i) to y (at stage i + 1). The shortest path problem
amounts to finding

min
paths F → T

J1(F).

Define the value function
J∗
i (x) = min

paths x → T
Ji(x)

which is the optimal cost going from x at stage i to T . Suppose that we have found an optimal path
ℓ, then at any stage < N , for x ∈ ℓ, according to Bellman’s principle, there must hold

J∗
i (x) = min

y∈N (x)
{c(x, y) + J∗

i+1(y)} (9)

for i = 1, · · · , N−1. The boundary condition appears at i = N , in which case J∗
N (y) = 0. In principle,

one may solve the above equation backward to finally get the value J∗
1 (F) and the desired shortest path.

Let us count the number of additions that we need to do. As before, the digraph has N stages and
at each stage, there are m states. Thus to obtain J∗

N−1(·), there is nothing to do. To obtain J∗
N−2(·),

at most m2 additions and m2 comparisons are needed, the same for J∗
i (·) when 2 ≤ i ≤ N − 2. For

J∗
1 (·), only m additions and m comparisons are needed. Putting together these operations, we need

O(Nm2) additions. This number is much smaller than (N − 1)mN−2 when N is large. The equation
(9), derived from Bellman’s principle, is called the Bellman equation of this problem.

Although Bellman’s equation is merely a necessary condition, it is clear that in the shortest path
problem, it’s also sufficient for finding the optimal path. We underscore a crucial property of the cost
function that can be easily neglected when applying Bellman’s principle. That is, the fact that the
total cost is a sum of the costs at each step is essential. We will come back to this point when we
study continuous dynamic programming. For the moment, establishing some intuitions is enough.

6.2.2 Optimal control on finite horizon

We now dive into optimal control of discrete time systems. We will see that optimal control can be
formulated as a shortest path problem, at least when the control space and state space are finite. Thus
the above reasoning still holds true.

Consider the nonlinear discrete time dynamical system

xk+1 = fk(xk, uk), (10)

where xk ∈ Xk (the system state at time instant k), uk ∈ Uk (the input at time instant k). We consider
cost of the following form

J = φ(xN) +

N−1∑
k=1

Lk(xk, uk), (11)

with 1 ≤ N ∈ Z , and the initial state x1 is assumed to fixed. Here φ and Lk are assumed to be some
non-negative functions. The control objective is to find a control input sequence π = (u1, · · · , uN−1),
which is also called a policy, such that the cost J is minimized, while keeping the constraints xk ∈ Xk

and uk ∈ Uk.
Notice that the cost (11) is only calculated on finite time intervals, i.e., from 1 to N . We call such

an optimal control problem on finite horizon. Later we will also consider infinite horizon cost of the
form

J =

∞∑
k=1

Lk(xk, uk). (12)

As mentioned before, when Uk and Xk are finite sets, the optimal control problem is equivalent to a
shortest path problem. Thus we can immediately derive the Bellman equation. In general, e.g., under

5

the constraint |uk| ≤ 1, the problem is no longer a shortest path problem, but Bellman’s principle is
still valid. As before, define the cost-to-go function Ji(x) =

∑N−1
k=i Lk(xk, uk)|xk=x + φ(xN), and the

value function J∗
i (x) = min(ui,··· ,uN−1) Ji(x). Then according to Bellman’s principle,

J∗
i (x) = min

ui∈Ui

{Li(x, ui) + J∗
i+1(fi(x, ui))}. (13)

The above equation meets the boundary at i = N−1, with J∗
N (x) = φ(x), for there is no control at the

final stage. Equation (13) is the Bellman equation for the optimal control problem on finite horizon.
The optimal control problem for discrete time systems on finite horizon can be reduced to solving the
Bellman equation. It is easy to notice that, this equation can be solved backward. For example, since
J∗
N (·) is known, we deduce

u∗
N−1(xN−1) = arg min

uN−1

{LN−1(xN−1, uN−1) + φ(fN−1(xN−1, uN−1))}

and so on. Finally, one terminates at u∗
1(x1) = argminu1

{L1(x1, u1) + J∗
2 (f1(x1, u1))}. The function

J∗
1 (x1) is clearly the optimal cost and the corresponding policy (u∗

1(x1), · · · , u∗
N−1(xN−1)) is optimal.

6.2.3 Example: Discrete LQR on finite horizon

Consider the constraint free linear plant

xk+1 = Axk +Buk

with cost function defined by

J = x⊤
NSNxN +

N−1∑
i=1

(x⊤
i Qxi + u⊤

i Rui)

with Q ≥ 0, SN ≥ 0 and R > 0. This is called a linear quadratic regulator problem.
The objective is to find an optimal control policy such that J is minimized. Using previous nota-

tions, the Bellman equation reads

J∗
i (x) = min

ui

{x⊤Qx+ u⊤
i Rui + J∗

i+1(Ax+Bui)} (14)

with boundary condition J∗
N (x) = x⊤SNx. We assert that J∗

i (x) is of the form x⊤Six for some Si ≥ 0.
To see this, we calculate J∗

N−1(xN−1) and the rest is justified by induction. Indeed,

J∗
N−1(xN−1) = min

uN−1

{x⊤
N−1QxN−1 + u⊤

N−1RuN−1 + (AxN−1 +BuN−1)
⊤SN (AxN−1 +BuN−1)},

from which we see that
u∗
N−1 = −(B⊤SNB +R)−1B⊤SNAxN−1

and it is evident that J∗
N−1(xN−1) contains no first order or scalar terms. Define

KN−1 := (B⊤SNB +R)−1B⊤SNA

which is called the Kalman gain, then u∗
N−1 = −KN−1xN−1. Substituting u∗

N−1 back, after direct but
cumbersome calculations, we get

J∗
N−1 = x⊤

N−1SN−1xN−1

where
SN−1 = Q+ (A−BKN−1)

⊤SN (A−BKN−1) +K⊤
N−1RKN−1

or equivalently
SN−1 = Q+A⊤SNA−A⊤SNB(R⊤SNR+B)−1B⊤SNA.

By induction, one may derive the equation for u∗
i , Ki and Si, which we summarize in the following:

Ki = (B⊤Si+1B +R)−1B⊤Si+1A
u∗
i = −Kixi

J∗
i = x⊤

i Sixi

Si = Q+ (A−BKi)
⊤Si+1(A−BKi) +K⊤

i RKi

(15)

6

with boundary condition SN a known matrix. The optimal value of the problem is provided by
J∗
1 (x1) = x⊤

1 S1x1. The algorithm runs as

SN → (KN−1, u
∗
N−1) → SN−1 → (KN−2, u

∗
N−2) → · · · → S2 → (K1, u

∗
1) → S1

Although the linear plant we consider here is time-invariant, the controller is time dependent. And
the extension to time-varying linear systems is rather straightforward: it suffices to replace A by Ai

and B by Bi in the formula (15).

Remark 1. Here we mention a difficulty in solving the Bellman equation. When no additional structures
are imposed on f and L, the minimization (13) is often not numerically tractable. When Ui and
Xi are finite with low dimension, it is not a big problem. When their dimensions are large, e.g.,
Ui =

∏m
k=1 Ik ⊆ Rm and Xi =

∏n
k=1 Jk ⊆ Rn, where the dimension of Ik and Jk are q, p respectively,

then there will be qm possible inputs and pn states at each stage. In the worst case, there will be
O(Npnqm) addition operations to do, which is intractable when p and q are large for n,m ≥ 3. Such
phenomenon is called curse of dimensionality noticed by Bellman in the 1960s. Today, this term is
widely used in various areas to indicate the intractability of the algorithm in higher dimension. To
cope with this, one can resort to approximation schemes.

6.2.4 Infinite horizon problem

Unlike in the finite horizon case, where the time-dependence of the system is of little importance (for
example, even though the system is time-invariant, the optimal policy is clearly time-dependent), the
optimal control of time-invariant systems on infinite horizon is quite different from that of time-varying
systems. In particular, the theory for time-invariant system is much richer than that of time-varying
system. For this reason, we will focus on time-invariant system

xk+1 = f(xk, uk) (16)

where xk ∈ X and uk ∈ U for all k ≥ 1. The admissible control input space may be state-dependent,
say uk ∈ U(xk) ⊆ U , a constraint. The cost function is of the form

J =

∞∑
k=1

L(xk, uk). (17)

Claim. For any stationary policy u, i.e., uk = u(xk) for all k ≥ 1, the cost function (17) under policy
u has the property that

Ju(x) = L(x, u(x)) + Ju(f(x, u(x)))

In fact, J(x) = L(x, u(x)) +
∑∞

k=2 L(xk, u(xk)) = L(x, u(x)) + Ju(f(x, u(x)), as claimed.

Recall that the cost-to-go function Ji(x) =
∑∞

k=i L(xk, uk)|xi=x. The value function J∗
i is the same

for all i since

J∗
i (x) = min

(ui,··· ,

∞∑
k=i

L(xk, uk)|xi=x = min
(u1,··· ,

∞∑
k=1

L(xk, uk)|x1=x = J∗
1 (x)

Due to this, we may denote J∗(x) := J∗
i (x), and the Bellman equation takes a very special structure:

J∗(x) = min
u∈U(x)

{L(x, u) + J∗(f(x, u))}. (18)

The difference of (18) compared to the Bellman equation of finite horizon problem lies in the fact
that the function J∗ appears on both sides of the equation. Therefore, it seems not possible to solve
equation (18) via backward iteration as in the finite horizon case, after all, there is no boundary
condition to start with! However, one may guess that starting with J∗ = 0 and by iteration, J∗

converges to a solution. We will discuss this in more detail in next subsection. Once J∗ has been
found, the optimal policy is given by

u∗(x) = arg min
u∈U(x)

{L(x, u) + J∗(f(x, u))}.

7

As mentioned before, Bellman equation provides necessary and sufficient condition for finite horizon
optimal control problems. One may ask if this still holds for infinite horizon problem, i.e., when (18) is
satisfied for some function Ĵ , is Ĵ the optimal cost function? This is clearly untrue as one may always
add a constant to the solution which produces another solution. But at least we know the following.

Proposition 1. Let J∗ be the optimal cost function and Ĵ a solution to the Bellman equation (18),
then Ĵ ≥ J∗.

Proof. By assumption, there exists û(·) satisfying Ĵ(x) = L(x, û(x)) + Ĵ(f(x, û(x)). Then under the
policy û(·), for any x1 ∈ X, we have

Ĵ(x1) = Ĵ(xk) +

k∑
i=1

L(xi, û(xi)),

which holds for all k ≥ 1. Thus Ĵ(x1) ≥
∑∞

i=1 L(xi, û(xi)) ≥ J∗(x1).

On the other hand, if we know before hand that the solution to the Bellman equation is unique (at
least in a certain class), then we may conclude that solving Bellman equation is sufficient to find the
optimal cost function.

6.2.5 Solving by iteration1

In general, we have to solve the Bellman equation numerically. There are two basic iteration approaches
which solves (18) approximately, namely, policy iteration and value iteration.

Value iteration: start from some non-negative function J0 : X → R and iterate according to

Jk+1(x) = min
u∈U(x)

{L(x, u) + Jk(f(x, u))}. (19)

The approximated optimal policy can be taken as

u∗
N+1(x) = arg min

u∈U(x)
{L(x, u) + JN (f(x, u))}

when JN reaches a reasonable level of accuracy.
There is an important property of value iteration, called the monotonicity property. Being J∗ the

optimal cost function, if we start from J0 ≥ J∗ , then Jk ≥ J∗ for all k ≥ 0. In fact,

J1(x) = min
u∈U(x)

{L(x, u) + J0(f(x, u))}

≥ min
u∈U(x)

{L(x, u) + J∗(f(x, u))}

= J∗(x).

Interestingly, we can get stronger result for the case J0 = 0. That is, the sequence {Jk} is monotone
increasing:

0 ≤ J1 ≤ J2 ≤ · · · ≤ J∗

since

J1(x) = min
u∈U(x)

L(x, u) ≥ 0

J2(x) = min
u∈U(x)

{L(x, u) + J1(f(x, u))}

≥ min
u∈U(x)

L(x, u)

= J1(x)

...

Thus, there exists a function J̃ ≤ J∗, such that Jk → J̃ pointwisely, but there may exist a gap between
J̃ and J∗. The following classical result provides a sufficient condition that J̃ = J∗.

1This part is mainly taken from the paper [1].

8

Proposition 2 (Convergence of value iteration I). If U is a metric space and the sets

Uk(x, λ) = {u ∈ U(x) : L(x, u) + Jk(f(x, u)) ≤ λ}

is compact for all x ∈ X, λ ∈ R and k, then the value iteration Jk ↑ J∗ pointwisely for any J0 ≥ 0
satisfying J0(x) ≤ minu∈U(x) L(x, u) + J0(f(x, u)) for all x ∈ X, e.g., J0 = 0.

Again, we use the LQR problem as an example.
Consider the linear time-invariant discrete time system

xk+1 = Axk +Buk (20)

with quadratic cost

J =

∞∑
k=1

(xT
kQxk + uT

kRuk) (21)

where Q ≥ 0 and R > 0. Assume that u ∈ Rm is constraint free. In order that J < ∞, it is sufficient
to assume that the system is stabilizable (verify!). Now the Bellman equation (18) reads

J∗(x) = min
u

{x⊤Qx+ u⊤Ru+ J∗(Ax+Bu)}. (22)

Let’s start with J1 = 0. By definition of VI,

J1(x) = min
u

{x⊤Qx+ u⊤Ru+ 0} = x⊤Qx

u1(x) ∈ argmin
u

{x⊤Qx+ u⊤Ru+ 0} = 0.

Denote J1(x) as J1(x) =: x⊤P1x, or P1 = Q. To get J2(x) and u2(x), we calculate

J2(x) = min
u

{x⊤Qx+ u⊤Ru+ J1(x)}

= min
u

{x⊤Qx+ u⊤Ru+ (Ax+Bu)⊤P1(Ax+Bu)}

= x⊤P2x

u2(x) ∈ argmin
u

{x⊤Qx+ u⊤Ru+ J1(x)} = −K1x.

Notice that this is the “reverse computation” of the optimal controller for finite horizon LQR.

References
[1] Dimitri P Bertsekas. Value and policy iterations in optimal control and adaptive dynamic pro-

gramming. IEEE transactions on neural networks and learning systems, 28(3):500–509, 2015.

9

