
Exercise for Optimal control – Week 6

Choose 1.5 problems to solve.

Disclaimer
This is not a complete solution manual. For some of the exercises, we provide only partial answers,
especially those involving numerical problems. If one is willing to use the solution manual, one should
judge whether the solutions are correct or wrong by him/herself.

Exercise 1. Derive the policy iteration scheme for the LQR problem

min
u(·)

∞∑
k=1

x⊤
k Qxk + u⊤

k Ruk

with Q = Q⊤ ≥ 0 and R = R⊤ > 0 subject to:

xk+1 = Axk +Buk.

Assume the system is stabilizable. Start the iteration with a stabilizing policy. Run the policy iteration
and value iteration on a computer for the following matrices:

A =

0 1 0
0 0 1
1 −1 2

 , b =

00
1

 , Q =

0 0 0
0 0 0
0 0 1

 , R = I

Compare the convergence rates of the two iterations scheme for the policies and value functions.

Solution. Choose u1(x) = K1x such that A + BK1 is Schur. Then assume Jk(x) = x⊤Pkx. The
policy iteration takes the form

x⊤P1x = x⊤Qx+ x⊤K⊤
1 RK1x+ x⊤(A+BK1)

⊤P1(A+BK1)x

or
P1 = Q+K⊤

1 RK1 + (A+BK1)
⊤P1(A+BK1)

This is a LME with unknown P1. To get u2, solve

u2(x) = argmin
u

{x⊤Qx+ u⊤Ru+ (Ax+Bu)⊤P1(Ax+Bu)}

= −(B⊤P1B +R)−1B⊤P1Ax.

Thus
K2 = (B⊤P1B +R)−1B⊤P1A.

Repeat this, one would get uk, uk+1, · · · and Jk, Jk+1, · · · . The policy iteration – the controller gain
K – has quadratic convergence rate, see [1], whereas value iteration has only linear convergence rate.

Exercise 2 (LQR for LTV systems). Consider a controllable LTV system

ẋ = A(t)x+B(t)u

with x ∈ Rn, u ∈ Rm and cost function

J = x(T )⊤Qfx(T ) +

∫ T

t0

x(t)⊤Q(t)x(t) + u(t)⊤R(t)u(t)dt

1



where Qf , Q(t) ≥ 0 and R(t) > 0 for all t ≥ 0. In addition, we assume A(·), B(·), Q(·) and R(·) are
continuous. The objective is to find an optimal control u∗ such that J is minimized.

1) The dynamic programming works also for time varying systems. Write down the Hamiltonian
H(t, x, u, p) for this problem and derive the optimal controller using the verification rule. Hint: consider
value function of the form J∗(t, x) = x⊤P (t)x.

2) Show that the HJB equation reduces to an ODE:

−Ṗ (t) = Q(t) + P (t)A(t) +A(t)⊤P (t)− P (t)B(t)R(t)−1B(t)⊤P (t). (1)

with boundary condition
P (T ) = Qf .

3) Prove that the equation (1) has a unique symmetric semi-positive definite solution on interval
[0, T ] for any T > 0. In particular, there is no finite escape time.

Solution. The Hamiltonian function is

H(x, u, p, t) = p⊤(A(t)x+B(t)u)− x⊤Q(t)x− u⊤R(t)u

We implement the first two steps of the verification rule:
Step 1 : solve the maximization maxu H(x, u, p, t), resulting in

u∗ = argmax
u

H(x, u, p, t) =
1

2
R(t)−1B(t)⊤p

and
H(x, u∗, p, t) = p⊤A(t)x− x⊤Q(t)x+

1

4
p⊤B(t)R(t)−1B(t)⊤p

Step 2 : Replace p by −∂V
∂x to get the HJB

−Vt − VxA(t)x− x⊤Q(t)x+
1

4
VxB(t)R(t)−1B(t)⊤V ⊤

x = 0.

Consider a candidate V (t, x) = x⊤P (t)x. Then

u∗ =
1

2
R(t)−1B(t)⊤P (t)x

and the HJB equation reduces to

−Ṗ (t) = Q(t) + P (t)A(t) +A(t)⊤P (t)− P (t)B(t)R(t)−1B(t)⊤P (t). (2)

with boundary condition
P (T ) = Qf .

The first order ODE (2) is called differential Riccati equation (DRE). Thus the continuous LQR
problem on finite horizon reduces to solving the DRE (2).

Notice that the right hand side of (2) is quadratic in P (thus locally Lipschitz!) and that A(·),
B(·), Q(·) and R(·) are continuous, therefore local existence and uniqueness of solutions are guaranteed.
This also implies that the solution to (2) is symmetric: if P (t) is a solution, so is P (t)⊤, while both
have the same terminal condition, thus P (t) = P (t)⊤.

We show next that there is no finite escape time. Suppose that the maximum interval of existence
of solutions to the DRE is (t1, T ] for some finite t1 ∈ R. Then by construction, for any t2 ∈ (t1, T ],
and x(t2) ∈ Rn, we have

−x(t)⊤Ṗ (t)x(t) +H(x(t), u(t),−2P (t)x(t)) ≤ 0, (3)

for any u(·) since −Vt + supH(x, u, p) = 0. One can check that the equation (3) is

− d

dt
x⊤(t)P (t)x(t) ≤ x⊤(t)Q(t)x(t) + u⊤(t)R(t)u(t)
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from which it follows that

x(t2)
⊤P (t2)x(t2) ≤ x(T )⊤Qfx(T ) +

∫ T

t2

x(t)⊤Q(t)x(t) + u(t)⊤R(t)u(t)dt, ∀u(·). (4)

(The inequality becomes equality for u = u∗, thus we also get P (t2) ≥ 0.) In particular, this is true
for u ≡ 0. In this case,

x(T ) = Φ(T, t2)x(t2)

where Φ(T, t) is the state transition matrix of the system ẋ = A(t)x. Recall that A is continuous, thus
A(·) as well as Φ(T, t) is bounded on [t1, T ]. Therefore, we may conclude from (4) that

x(t2)
⊤P (t2)x(t2) ≤ c|x(t2)|2

for some c, depending on t1. Therefore P (t2) < cI for all t2 ∈ (t1, T ] (no blow-up!). To show that P
can be extended outside (t1, T ], let t2 be sufficiently close to t1. Since P (t) is uniformly bounded on
(t1, T ], then near t2, the DRE is Lipschitz on (t1, t2]. Thus the solution can be extended to t1. This is
a contradiction since we assumed (t1, T ] is the maximum interval of existence.

Exercise 3. 1) Derive the HJB equation for the time optimal control problem of the double integrator

ẋ1 = x2

ẋ2 = u

with initial condition (1, 1) and terminal condition (0, 0) under the constraint |u| ≤ 1.
2) Solve the HJB equation using method of characteristics.

Solution. We already know the HJB equation for this problem is

−Vt − Vx1
x2 + |Vx2

| − 1 = 0

with boundary condition
V (tf , 0) = 0.

Remember H̃(x, Vx) = H(x, u∗(x, Vx),−Vx) = −Vx1
x2+|Vx2

|−1, thus by the method of characteristics,
ṗ = −H̃x, or

ṗ1 = 0

ṗ2 = p1

which is exactly the costate equation from in maximum principle. Then one solve a BVP for the system
(x1, x2, p1, p2) and then the HJB equation can be solved along the characteristic curve by integrating

d

dt
V = p⊤Fp = −p1x2 + |p2|
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