Exercise for Optimal control - Week 5

Choose one problem to solve.

Exercise 1. Use tent method to derive the KKT condition (google it if you don't know) for the nonlinear optimization problem:

$$
\min f(x)
$$

subject to

$$
\begin{aligned}
g_{i}(x) \leq 0, & i=1, \cdots, m \\
h_{j}(x)=0, & j=1, \cdots, l
\end{aligned}
$$

where f, g_{i}, h_{j} are continuously differentiable real-valued functions on \mathbb{R}^{n}.
Exercise 2. Find a variation of inputs u_{ϵ} near u_{*} that generate the deviation vectors of the form $\sum_{i=1}^{q} k_{i} v_{i}\left(t_{f}\right)$ for $k_{i} \geq 0$, where $v_{i}\left(t_{f}\right)$ is generated by

$$
u_{i, \epsilon}(t)= \begin{cases}w_{i}, & t \in\left(\tau_{i}-\epsilon, \tau_{i}\right] \\ u_{*}(t), & \text { otherwise }\end{cases}
$$

See lecture note. Hint: consider the combined needle variation

$$
u_{\varepsilon}(t)= \begin{cases}w_{i}, & t \in\left(\tau_{i}-k_{i} \varepsilon, \tau_{i}\right] \text { for some } i \in\{1, \cdots, q\} \\ u_{*}(t), & \text { otherwise }\end{cases}
$$

Then find $x_{\epsilon}\left(t_{f}\right)$ and $\left.\frac{\partial x_{\epsilon}\left(t_{f}\right)}{\partial t}\right|_{\epsilon=0+}$. Start with $q=2$.
Exercise 3. Consider driving a cart (a unicycle, or Dubins car) on the plane

$$
\begin{aligned}
\dot{x} & =v \cos \theta \\
\dot{y} & =v \sin \theta \\
\dot{\theta} & =\omega
\end{aligned}
$$

where (x, y) represents the position of the cart and θ the heading angle, the driving speed is a constant $v>0$, see Figure 1. There is only one control: the turning rate ω, which is bounded by

$$
|\omega| \leq \frac{v}{R}
$$

for some positive constant R. Study the time optimal control problem of driving the cart from initial position at

$$
(x(0), y(0), \theta(0))^{\top}=(0,0,0)^{\top}
$$

to

$$
\left(x\left(t_{f}\right), y\left(t_{f}\right), \theta\left(t_{f}\right)\right)^{\top}=\left(x_{f}, y_{f}, \theta_{f}\right)^{\top} \in \mathbb{R}^{3}
$$

What are the possible types of trajectories joining the initial and terminal states? Note 1: there may exist singular arcs! Check lecture note 4. Note 2: there may exist several solutions to the maximum principle.

Figure 1: A unicycle.

