Exercise for Optimal control - Week 3

Choose $\mathbf{1 . 5}$ problems to solve.

Exercise 1. Consider a harmonic oscillator $\ddot{x}+x=u$ whose control is constrained in the interval $[-1,1]$. Find an optimal controller u which drives the system at initial state $(x(0), \dot{x}(0))=\left(X_{1}, X_{2}\right)$ to the origin in minimal time. Draw the phase plot.

Exercise 2. Consider a rocket, modeled as a particle of constant mass m moving in zero gravity empty space. Let $u>0$ be the mass flow, assumed to be a known function of time, let c be the constant thrust velocity and v an angle that can be controlled. See Figure 1. The equations of motion are

$$
\begin{aligned}
\dot{x}_{1} & =x_{3} \\
\dot{x}_{2} & =x_{4} \\
\dot{x}_{3} & =\frac{c}{m} u(t) \cos (v(t)) \\
\dot{x}_{4} & =\frac{c}{m} u(t) \sin (v(t))
\end{aligned}
$$

Figure 1: A rocket model.

1) Show that cost functionals of the class

$$
\min _{v(\cdot)} \int_{0}^{t_{f}} \mathrm{~d} t \text { or } \min _{v(\cdot)} \phi\left(x\left(t_{f}\right)\right)
$$

gives the optimal control

$$
\tan v^{*}(t)=\frac{c_{1}+c_{2} t}{c_{3}+c_{4} t}
$$

2) Assume that the rocket starts at rest at the origin and that we want to drive it to a given height $x_{2 f}$ in a given time t_{f} such that the final velocity in the horizontal direction $x_{3}\left(t_{f}\right)$ is maximized while $x_{4 f}=0$. Show that the optimal control is reduced to a linear tangent law

$$
\tan v^{*}(t)=c_{1}+c_{2} t
$$

3) Let the rocket in represent a missile whose target is at rest. Minimize the transfer time t_{f} from the state $\left[0,0, x_{3 i}, x_{4 i}\right]$ to the state $\left[x_{1 f}, x_{2 f}\right.$, free, free]. Solve the problem under the assumption that u is constant.
4) To increase the realism now assume that the motion is under a constant gravitational force. The only equation that needs to be modified is the one for x_{4} (the acceleration in the vertical direction):

$$
\dot{x}_{4}=\frac{c}{m} u(t) \sin (v(t))-g .
$$

Show that the optimal law is still optimal for the cost functional

$$
\min _{v(\cdot)} \phi\left(x\left(t_{f}\right)\right)+\int_{0}^{t_{f}} \mathrm{~d} t .
$$

5) Now we take into consideration of the mass loss of the rocket. Let x_{5} denote the mass of the rocket. The overall equations of motion now read

$$
\begin{aligned}
\dot{x}_{1} & =x_{3} \\
\dot{x}_{2} & =x_{4} \\
\dot{x}_{3} & =\frac{c}{m} u(t) \cos (v(t)) \\
\dot{x}_{4} & =\frac{c}{m} u(t) \sin (v(t))-g \\
\dot{x}_{5} & =-u(t)
\end{aligned}
$$

where $u \in\left[0, u_{\max }\right]$. Show that the optimal solution to transferring the rocket from a state of given position, velocity and mass to a given altitude $x_{2 f}$ using a given amount of fuel, such that the distance $x_{1}\left(t_{f}\right)-x_{1}(0)$ is maximized, is

$$
v^{*}(t)=\text { constant }, u^{*}(t)=\left\{u_{\max }, 0\right\}
$$

Exercise 3. Try to solve the Rayleigh problem: consider minimizing

$$
J=\int_{0}^{t_{f}}\left(u^{2}+x_{1}^{2}\right) \mathrm{d} t
$$

subject to (the controlled van de Pol oscillator):

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-x_{1}+x_{2}\left(1.4-0.14 x_{2}^{2}\right)+4 u
\end{aligned}
$$

with initial condition $\left(x_{1}(0), x_{2}(0)\right)=(-5,-5), t_{f}=4.5$ and a mixed input and state constraint:

$$
-1 \leq u(t)+\frac{x_{1}(t)}{6} \leq 0
$$

Draw the optimal controller and the state trajectory. You may use numerical methods, e.g., discretization.

