
Exercise for Optimal control – Week 2

Choose one problem to solve.

Disclaimer
This is not a complete solution manual. For some of the exercises, we provide only partial answers,
especially those involving numerical problems. If one is willing to use the solution manual, one should
judge whether the solutions are correct or wrong by him/herself.

Exercise 1 (Insect control). Let w(t) and r(t) denote, respectively, the worker and reproductive
population levels in a colony of insects, e.g. wasps. At any time t, 0 ≤ t ≤ T in the season the colony
can devote a fraction u(t) of its effort to enlarging the worker force and the remaining fraction u(t)
to producing reproductives. The per capita mortality rate of workers is µ and the per capita natality
rate is b when full effort is put on the worker population. Assume µ < b. The two populations are
governed by the equations

ẇ = (bu− µ)w

ṙ = c(1− u)w

with (w(0), r(0) = (1, 0), where u satisfies the constraint 0 ≤ u(t) ≤ 1. The objective is to maximize
r(T ) or minimize

J = −r(T ).

Solution. Since L = 0, the Hamiltonian for this problem is H = p1(bu − µ)w + p2c(1 − u)w. The
costate equation reads

ṗ1 = −p1(bu− µ)− p2c(1− u)

ṗ2 = 0

with terminal condition p1(T ) = 0, p2(T ) = 1. Thus p2(t) ≡ 1 and

H = (p1b− c)wu+ (c− p1µ)w.

Since w > 0 for all t ≥ 0, the optimal control law is

u∗(t) =

{
1, p1(t)b ≥ c

0, p1(t)b < c
.

Since p1(T ) = 0, then near T , u should be taken as 0. Moving backward, assume ts is the first time
instance that p1(ts)b = c. Then on [ts, T ],

ṗ1 = µp1 − c

Solving this, we obtain

p1(t) = eµ(t−ts)p1(ts) +
c

µ
(1− eµ(t−ts)) =

c

b
eµ(t−ts) +

c

µ
(1− eµ(t−ts))

(remember that p1(ts)b = c.) Now at t = T , p1(T ) = 0, or

0 =
1

b
eµ(T−ts) +

1

µ
(1− eµ(T−ts))

from which it follows that
ts = T − 1

µ
ln

(
b

b− µ

)
. (1)
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Continuing moving backward, the costate equation becomes

ṗ1 = −p1(b− µ)

with terminal condition p1(ts) =
c
b > 0. Solving the equation, we obtain

p1(t) = e(b−µ)(ts−t)p1(ts), t ∈ [0, ts]

which is a decreasing function on [0, ts]. This justifies the optimality of u∗(t), i.e., p(t)c > b on [0, ts].
Hence

u∗(t) =

{
1, 0 ≤ t < ts

0, ts ≤ t ≤ T

where ts is as (1).

Exercise 2 (Time optimal control of a lunar lander). Study the time optimal control of the moon
lander problem (see lecture notes for the model). In addition, argue that there is an optimal feedback
controller.

Solution. The model for the moon lander is

ẋ1 = x2

ẋ2 = −g + u

where 0 < g < 1 and |u| ≤ 1, with initial condition (x1(0), x2(0)) = (h, v) and terminal constraint
(x1(tf ), x2(tf )) = (0, 0). Now for time optimal control, the cost is

J =

∫ tf

0

1dt.

For this problem, H = p1x2 + p2(−g + u) + p0 and the costate equation is

ṗ1 = 0

ṗ2 = −p1

from which we solve p1 = c1 and p2(t) = −c1t + c2 for some constants c1, c2. The MP says u∗(t) =
sign(p∗2(t)). Notice that it is necessary that p∗2(tf ) > 0 in order to land successfully. There are two
possible cases.

Case 1: c1 ≥ 0. In this case, there is no switch, and the controller is u ≡ 1, which happens only
when 1− g = v2

2h .
Case 2: c1 < 0. There is at most one switch, say ts. Then −c1ts + c2 = 0, which implies c2 < 0. In

this case, we can calculate the system trajectory as

x1(t) = h+ vt− 1

2
(1 + g)t2

x2(t) = v − (1 + g)t

for t ∈ [0, ts], and

x1(t) = h+ t2s + (v − 2ts)t+
1

2
(1− g)t2

x2(t) = v − 2ts + (1− g)t

Put x1(tf ) = x2(tf ) = 0, we get two equations

v − 2ts + (1− g)tf = 0

h+ t2s + (v − 2ts)tf +
1

2
(1− g)t2f = 0
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from which we can solve

ts =
v +

√
v2 − 1

2 (1 + g)(v2 − 2(1− g)h)

1 + g

Notice that v2 < 2(1− g)h – in order to have a switch, thus ts is well-defined. To conclude

u∗(t) =

{
−1, 0 ≤ t ≤ ts

1, t > ts
.

Thus the lander first accelerate and then de-accelerate – unlike the minimum fuel control, there is no
free falling process.

Exercise 3 (Minimum fuel and time control). Consider the planar system

ẋ1 = x2

ẋ2 = u

where u satisfies the constraint |u(t)| ≤ 1 for all t ∈ [0, tf ]. For any given initial state (ξ1, ξ2), find an
optimal control u∗ which drives the state to (0, 0) while minimizing

J = tf +

∫ tf

0

|u(t)|dt =
∫ tf

0

(1 + |u(t)|dt.

Solution. The Hamiltonian is H = p1x2 + p2u+ p0(1 + |u|) and the costate equation

ṗ1 = 0

ṗ2 = −p1

from which we get p1 = c1, p2(t) = −c1t+ c2. If p0 = 0, then u∗ = sign(p∗2). Note that since tf is free,
we have H ≡ 0 along the optimal process, or

cx∗
2(t) + (−c1t+ c2)u

∗(t) = 0.

In particular, at t = tf , we get −c1tf + c2 = 0. Hence there is no switch. Then either u∗ ≡ 1 or
u∗ ≡ −1. For the former case,

x1(t) = ξ1 + ξ2t+
1

2
t2

x2(t) = ξ2 + t

for t ∈ [0, tf ] and x(tf ) = 0. From this we can solve

ξ1 −
1

2
ξ22 = 0

and tf = −ξ2. Thus ξ2 < 0, and x1 − 1
2x

2
2 = 0, with x2 < 0 is the optimal trajectory. For the latter

case u∗ ≡ −1, we obtain the optimal trajectory in the same fashion: x1 +
1
2x

2
2 = 0, with x2 > 0.

Now assume p0 = −1. Then

u∗(t) =


−1, p∗2(t) ≤ −1

0, −1 < p∗2(t) ≤ 1

1, p∗2(t) > 1.

Therefore, the optimal control sequence can have the following patterns or its sub-sequence with the
same order – meaning that there shouldn’t be any sequence like −1, 1 since p∗2 is continuous:

−1, 0, 1

1, 0,−1
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Let’s consider the first case, and the second case is similar. Denote the two switching times as t1 < t2.
Then we can integrate the system on these intervals:{

x1(t) = ξ1 + ξ2t− 1
2 t

2,

x2(t) = ξ2 − t,
0 ≤ t < t1{

x1(t) = ξ1 + ξ2t1 − 1
2 t

2
1 + (ξ2 − t1)(t− t1),

x2(t) = ξ2 − t1,
t1 ≤ t < t2{

x1(t) = ξ1 + ξ2t1 − 1
2 t

2
1 + (ξ2 − t1)(t2 − t1) + (ξ2 − t1 − t2)(t− t2) +

1
2 (t

2 − t22)

x2(t) = ξ2 − t1 + t− t2
t2 ≤ t < tf

At the switches, we have
p∗2(t1) = −1, p∗2(t2) = 1

or

−c1t1 + c2 = −1

−c1t2 + c2 = 1

Since tf is free, the maximum principle tells us that

H = c1x
∗
2(t1) + (−c1t1 + c2)(−1)− 2 = 0

Putting x1(tf ) = 0, x2(tf ) = 0, then from the five equations we can solve c1, c2, t1, t2, tf – quite
cumbersome. The phase plot looks like in the following figure:

Figure 1: Minimum fuel-time control
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