Exercise for Optimal control - Week 1

Choose two problems to solve.

Exercise 1 (Fundamental lemma of CoV). Let f be a real valued function defined on open interval (a, b) and f satisfies

$$
\int_{a}^{b} f(x) h(x) \mathrm{d} x=0
$$

for all $h \in C_{c}(a, b)$, i.e., h is continuous on (a, b) and its support, i.e., the closure of

$$
\{x: h(x) \neq 0\}
$$

is contained in (a, b).

1) Show that f is identically zero if f is continuous. If f is only piecewise continuous, then f has only finite non-zero values. Hint: consider for example that $f\left(x_{1}\right)>0$, since f is continuous, f should be positive near x_{1}, say $\left(x_{1}-\delta, x_{1}+\delta\right)$. Next, construct a non-negative continuous function $h \in$ $C_{c}\left(x_{1}-\epsilon, x_{1}+\epsilon\right)$ which has some positive values on this interval. You'll then arrive at a contradiction since $\int_{a}^{b} f h \mathrm{~d} x>0$.
2) Extend to multivariate case: i.e., if f is continuous on an open set Ω and

$$
\int_{\Omega} f(x) h(x) \mathrm{d} x=0
$$

for all $h \in C_{c}(\Omega)$, then $f \equiv 0$ for all $x \in \Omega$. Hint: as before, if $f\left(x_{1}\right)>0$ at some x_{1}, then there exists a neighborhood of x_{1} on which f is positive. Construct a non-negative function which vanishes outside this neighborhood. And you get a contradiction.

Exercise 2 (Naive derivation of the 1st variations). Derive the first order variations of the optimal control problem

$$
\begin{aligned}
& \dot{x}=f(x, u) \\
& \min _{u} J(u(\cdot)):=\varphi(x(T))+\int_{0}^{T} L(x, u) \mathrm{d} t
\end{aligned}
$$

using variation/perturbation

$$
u_{\epsilon}(t)=u_{*}(t)+\epsilon v(t)
$$

for an arbitrary $v(\cdot)$. Assume f, L and φ are C^{2} and the initial state is fixed. Compare with the computation using δ operator. Hint: write $x_{\epsilon}(t)$ as the solution to the following integral equation $\dot{x}_{\epsilon}(t)=f\left(x_{\epsilon}, u_{\epsilon}\right)$. Define $H(x, u, p)=p^{\top} f(x, u)-L(x, u)$ (the Hamiltonian!), and fix a C^{1} curve $t \mapsto p(t)$, then

$$
\begin{aligned}
J\left(u_{\epsilon}\right) & =\varphi\left(x_{\epsilon}(T)\right)+\int_{0}^{T} L\left(x_{\epsilon}, u_{\epsilon}\right) \mathrm{d} t \\
& =\varphi\left(x_{\epsilon}(T)\right)+\int_{0}^{T} p^{\top}(t) \dot{x}_{\epsilon}-H\left(x_{\epsilon}, u_{\epsilon}, p\right) \mathrm{d} t
\end{aligned}
$$

Apply integration by parts to get rid of \dot{x}_{ϵ}. Then compute $\left.\frac{\partial J}{\partial \epsilon}\right|_{\epsilon=0}$.
Exercise 3 (Dido's problem). Formulate Dido's problem as optimal control with only finite dimensional constraints. Hint: define a new variable $\eta(t):=\int_{0}^{t}\left|\gamma^{\prime}(s)\right| \mathrm{d} s$ and let $\gamma^{\prime}(t):=u(t)$.

Exercise 4 (Minimum surface problem). Let D be an open set on the plane \mathbb{R}^{2}. Consider a surface $D \ni(x, y) \mapsto(x, y, u(x, y)) \in \mathbb{R}^{3}$. The area of the graph of this surface can be calculated as

$$
\mathcal{A}(u)=\int_{D} \sqrt{1+u_{x}^{2}+u_{y}^{2}} \mathrm{~d} x \mathrm{~d} y
$$

where u_{x}, u_{y} stands for partial derivatives, with boundary condition $\left.u\right|_{\partial D}=g$ for some function g on ∂D. Consider the problem of minimizing $\mathcal{A}(\cdot)$. Derive the Euler-Lagragian equation of this problem. Hint: let v be an arbitrary function whose support lies in D. Assume u_{*} is a minimizer, and consider the variation

$$
u_{\epsilon}=u+\epsilon v .
$$

Calculate $\left.\frac{\partial \mathcal{A}\left(u_{\epsilon}\right)}{\partial \epsilon}\right|_{\epsilon=0}$ to get

$$
\int_{D} \frac{u_{x} v_{x}+u_{y} v_{y}}{\sqrt{1+u_{x}^{2}+u_{y}^{2}}} \mathrm{~d} x \mathrm{~d} y=0
$$

They apply integration by parts formula for $\varphi \in C_{c}^{\infty}(D)$ (no boundary terms)

$$
\int_{D} v_{x} \varphi \mathrm{~d} x \mathrm{~d} y=-\int_{D} v \varphi_{x} \mathrm{~d} x \mathrm{~d} y
$$

After eliminating v_{x}, v_{y}, apply Exercise 1.
Exercise 5 (Boundary value problem). Consider the following boundary value problem

$$
\begin{equation*}
\ddot{q}+f(q, \dot{q})=0 \tag{1}
\end{equation*}
$$

where $q \in \mathbb{R}^{n}$ with boundary condition

$$
\begin{equation*}
q(0)=a, \quad q(1)=b \tag{2}
\end{equation*}
$$

Two classical methods exist for numerically solving the BVP: 1) Finite difference method; 2) Shooting.

1) The first order derivative may be discretized as

$$
\dot{q}\left(t_{i}\right) \approx \frac{q\left(t_{i+1}\right)-q\left(t_{i}\right)}{t_{i+1}-t_{i}}
$$

In particular, for fixed step size $h=t_{i+1}-t_{i}$,

$$
\dot{q}_{i}=\frac{q_{i+1}-q_{i}}{h} .
$$

Propose a discretization scheme for second order derivative and write the discretized version of (1), (2) in matrix form. Use this to find the geodesic on the ellipsoid

$$
x^{2}+y^{2}+\frac{z^{2}}{4}=1
$$

Try different boundary values and observe the non-uniqueness geodesic phenomenon.
2) The shooting method works like this. Write the second order ODE as a first order one by defining $x_{1}=q, x_{2}=\dot{q}$

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
-f\left(x_{1}, x_{2}\right)
\end{array}\right]
$$

Then we know $x_{1}(0)=a, x_{1}(1)=b$. Suppose that $x_{2}(0)=\lambda$. Then with the initial condition $x(0)=(a, \lambda)$, the value $x_{1}(1)$ should be uniquely determined, which is a function of λ, denoted as $x_{1}(1, \lambda)$. Let

$$
F(\lambda):=x_{1}(1, \lambda)-b
$$

The idea is to alter λ so that $F(\lambda)$ converges to 0 . This is equivalent to finding the root of F (or $|F(\cdot)|^{2}$). Solve the problem in 1) using shooting method. You may use gradient descent or Newton's method. Is the scheme stable? Or, when does the algorithm converge?

Exercise 6 (Hamiltonian equation). Recall the Hamiltonian equation:

$$
\begin{aligned}
\dot{q} & =\frac{\partial H}{\partial p}(q, p) \\
\dot{p} & =-\frac{\partial H}{\partial q}(q, p)
\end{aligned}
$$

where $q, p \in \mathbb{R}^{n}$. Let ϕ_{t} be the flow of the system. That is, $(q(t), p(t))=\phi_{t}\left(q_{0}, p_{0}\right)$ for the initial condition $\left(q_{0}, p_{0}\right)$.

1) For functions $H_{1}, H_{2}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, define the Poisson bracket between H_{1} and H_{2} as

$$
\left\{H_{1}, H_{2}\right\}=\sum_{i=1}^{n} \frac{\partial H_{1}}{\partial q_{i}} \frac{\partial H_{2}}{\partial p_{i}}-\frac{\partial H_{1}}{\partial p_{i}} \frac{\partial H_{2}}{\partial q_{i}}
$$

Show that for any real function f on $\mathbb{R}^{n} \times \mathbb{R}^{n}, f$ satisfies the ordinary differential equation along the Hamiltonian system:

$$
\dot{f}=\{f, H\}
$$

2) Given a bounded set $U \subseteq \mathbb{R}^{n} \times \mathbb{R}^{n}$, define

$$
U_{t}=\phi_{t}(U)
$$

Show that the volume of U_{t} is constant. Hint: use the transport equation: consider a system $\dot{x}=f(x)$, and let $\phi_{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be its flow, then for any bounded set $D \subseteq \mathbb{R}^{n}$,

$$
\frac{d}{d t} \operatorname{vol}\left(\phi_{t}(D)\right)=\int_{\phi_{t}(D)} \operatorname{div} f \mathrm{~d} x
$$

3) Assume that there exists a bounded forward invariant set $D \subseteq \mathbb{R}^{n} \times \mathbb{R}^{n}$ of the Hamiltonian system. Then for any open set $U \subseteq D$, and any $s>0$, there exists at least one point $x \in U$ which returns to U after some time $t \geq s$.
4) The Hamiltonian equation has time-dependent version

$$
\begin{aligned}
\dot{q} & =\frac{\partial H}{\partial p}(q, p, t) \\
\dot{p} & =-\frac{\partial H}{\partial q}(q, p, t)
\end{aligned}
$$

Show that the energy is not preserved.
5) The Hamiltonian equation can be generalized to

$$
\left[\begin{array}{c}
\dot{q} \\
\dot{p}
\end{array}\right]=\left[\begin{array}{cc}
0 & I \\
-I & R(q)
\end{array}\right]\left[\begin{array}{c}
\frac{\partial H}{\partial q} \\
\frac{\partial H}{\partial p}
\end{array}\right]+\left[\begin{array}{c}
0 \\
G(q) u
\end{array}\right]
$$

where u is an input and R, G are matrices. Assume that $H \geq 0$. Show that the matrix $R(q)$ plays the role of energy damping/injection - depending on sign. Show that the system is dissipative if R is semi-positive definite, in the sense that there exists an output y such that

$$
-\int_{\infty}^{\infty} y^{\top}(t) u(t) \mathrm{d} t \leq H(q(0), p(0))
$$

That is, the energy that can be extracted from the system via the input output pair (u, y) is less than the total energy of the system.

