
Exercise for Optimal control – Week 1

Choose two problems to solve.

Disclaimer
This is not a complete solution manual. For some of the exercises, we provide only partial answers,
especially those involving numerical problems. If one is willing to use the solution manual, one should
judge whether the solutions are correct or wrong him/herself.

Exercise 1 (Fundamental lemma of CoV). Let f be a real valued function defined on open interval
(a, b) and f satisfies ∫ b

a

f(x)h(x)dx = 0

for all h ∈ Cc(a, b), i.e., h is continuous on (a, b) and its support, i.e., the closure of

{x : h(x) ̸= 0}

is contained in (a, b). Note that this also holds for h ∈ C1
c (a, b) or h ∈ C∞

c (a, b).
1) Show that f is identically zero if f is continuous. If f is only piecewise continuous, then f has

only finite non-zero values.
2) Extend to multivariate case: i.e., if f is continuous on an open set Ω and∫

Ω

f(x)h(x)dx = 0

for all h ∈ Cc(Ω), then f ≡ 0 for all x ∈ Ω.

Solution. 1) Suppose that f is positive at x0. Since f is continuous, then there exists an interval, say
(x0 − δ, x0 + δ) for some δ > 0 on which f is positive. Define

h(x) =

{
δ2

4 − (x− x0)
2, x0 − δ

2 ≤ x ≤ x0 +
δ
2

0, else
.

then h ∈ Cc(a, b) – h is even C1
c (a, b). But∫ b

a

h(x)f(x)dx =

∫ x0+δ/2

x0−δ/2

h(x)f(x)dx > 0

a contradiction. When f is only piecewise continuous, we can reason as in the continuous case on
continuous intervals.

2) If f is positive at some point x0 ∈ D, then there exists a ball centered at x0 with radius r,
denoted B(x0, r). Construct a function

h(x) =

{
r2

4 − |x− x0|2, |x− x0| ≤ r
2

0, else
.

then h is continuous but
∫
fh > 0, again a contradiction.

Exercise 2 (Naive derivation of the 1st variations). Derive the first order necessary condition of the
optimal control problem

ẋ = f(x, u)

min
u

J(u(·)) := φ(x(T )) +

∫ T

0

L(x, u)dt
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using variation/perturbation
uϵ(t) = u∗(t) + ϵv(t)

for an arbitrary v(·). Assume f, L and φ are C1 and the initial state is fixed. Compare with the
computation using δ operator.

Solution. Define H(x, u, p) = p⊤f(x, u) − L(x, u) (the Hamiltonian), and fix a C1 curve t 7→ p(t),
then

J(uϵ) = φ(xϵ(T )) +

∫ T

0

L(xϵ, uϵ)dt

= φ(xϵ(T )) +

∫ T

0

p⊤(t)ẋϵ −H(xϵ, uϵ, p)dt

where xϵ is the solution to
ẋϵ = f(xϵ, uϵ), xϵ(0) = x0.

Applying integration by parts we can get rid of ẋϵ:

J(uϵ) = φ(xϵ(T )) + p(t)⊤xϵ(t)|T0 −
∫ T

0

ṗ⊤(t)xϵ(t) +H(xϵ, uϵ, p)dt

Now calculate

∂J

∂ϵ
|ϵ=0 = φx(x∗(T ))

∂xϵ

∂ϵ
|ϵ=0 + p(t)⊤

∂xϵ

∂ϵ
|ϵ=0 −

∫ T

0

ṗ⊤(t)
∂xϵ

∂ϵ
|ϵ=0 +Hx

∂xϵ

∂ϵ
|ϵ=0 +Huvdt

= (φx(x∗(T )) + p(T )⊤)
∂xϵ

∂ϵ
|ϵ=0 −

∫ T

0

(ṗ⊤ +Hx)
∂xϵ

∂ϵ
|ϵ=0 +Huvdt.

Choose p such that
ṗ = −H⊤

x (x∗, u∗, p)

with terminal condition
p(T ) = −φx(x∗(T ))

⊤

we arrive at
∂J

∂ϵ
|ϵ=0 = −

∫ T

0

Huvdt.

Since v is arbitrary, we get by the fundamental Lemma of CoV that Hu(x∗(t), u∗(t), p(t)) = 0 for all
t ∈ [0, T ]. This is consistent with the calculation using δ operator.

Exercise 3 (Dido’s problem). Formulate Dido’s problem as optimal control with only finite dimen-
sional constraints.

Solution. In Dido’s problem, the area to be maximize is some functional

J(γ) =

∫ 1

0

L(γ, γ̇)ds

where γ = [γ1, γ2]
⊤ is some curve on the xy-plane with the constraints γ2(0) = γ2(1) = 0, γ2(s) ≥ 0

for all s ∈ [0, 1]. The constraint for this problem is∫ 1

0

|γ′(s)|ds = C

for some constant C > 0. Introduce a new state

η(t) =

∫ t

0

|γ′(s)|ds
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and input u(t) = γ′(t). Then the system equation may be written as

γ̇ = u

η̇ = |u|

and the cost

J(u) =

∫ 1

0

L(γ, u)dt

with constraint

γ2(0) = γ2(1) = 0, γ2 ≥ 0,

η(0) = 0, η(1) = C

Exercise 4 (Minimum surface problem). Let D be an open set on the plane R2. Consider a surface
D ∋ (x, y) 7→ (x, y, u(x, y)) ∈ R3. The area of the graph of this surface can be calculated as

A(u) =

∫
D

√
1 + u2

x + u2
ydxdy

where ux, uy stands for partial derivatives, with boundary condition u|∂D = g for some function g on
∂D. Consider the problem of minimizing A(·). Derive the Euler-Lagragian equation of this problem.

Solution. Let v be an arbitrary function whose support lies in D. Assume u∗ is a minimizer, and
consider the variation

uϵ = u+ ϵv.

Calculate ∂A(uϵ)
∂ϵ |ϵ=0 to get ∫

D

uxvx + uyvy√
1 + u2

x + u2
y

dxdy = 0

After integration by parts, we get

∫
D

d

dx

 ux√
1 + u2

x + u2
y

 v +
d

dy

 uy√
1 + u2

x + u2
y

 v = 0.

Since v ∈ C1
c (D) is arbitrary, by the fundamental lemma of CoV, we get

d

dx

 ux√
1 + u2

x + u2
y

 v +
d

dy

 uy√
1 + u2

x + u2
y

 = 0.

Exercise 5 (Boundary value problem). Consider the following boundary value problem

q̈ + f(q, q̇) = 0 (1)

where q ∈ Rn with boundary condition

q(0) = a, q(1) = b. (2)

Two classical methods exist for numerically solving the BVP: 1) Finite difference method; 2) Shoot-
ing.

1) The first order derivative may be discretized as

q̇(ti) ≈
q(ti+1)− q(ti)

ti+1 − ti

In particular, for fixed step size h = ti+1 − ti,

q̇i =
qi+1 − qi

h
.
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Propose a discretization scheme for second order derivative and write the discretized version of (1),
(2) in matrix form. Use this to find the geodesic on the ellipsoid

x2 + y2 +
z2

4
= 1.

Try different boundary values and observe the non-uniqueness geodesic phenomenon.
2) The shooting method works like this. Write the second order ODE as a first order one by defining

x1 = q, x2 = q̇ [
ẋ1

ẋ2

]
=

[
x2

−f(x1, x2)

]
Then we know x1(0) = a, x1(1) = b. Suppose that x2(0) = λ. Then with the initial condition
x(0) = (a, λ), the value x1(1) should be uniquely determined, which is a function of λ, denoted as
x1(1, λ). Let

F (λ) := x1(1, λ)− b.

The idea is to alter λ so that F (λ) converges to 0. This is equivalent to finding the root of F (or
|F (·)|2). Solve the problem in 1) using shooting method. You may use gradient descent or Newton’s
method. Is the scheme stable? Or, when does the algorithm converge?

Solution. 1) Let ti = ih, i = 0, · · · , N and h = 1/N . For second order derivative, we can use

q̈(ti) =
q̇(ti+1)− q̇(ti)

ti+1 − ti
=

q(ti+1)−q(ti)
ti+1−ti

− q(ti)−q(ti−1)
ti−ti−1

ti+1 − ti

whenever 1 ≤ i ≤ N − 1. Since ti+1 − ti = h, the above can be simplified to

q̈(ti) =
q(ti+1)− 2q(ti) + q(ti−1)

h2

Denote q(ti) = qi and q = [q1, · · · , qN−1]
⊤, then q̈ = [q̈1, · · · , q̈N−1]

⊤ = 1
h2 (Aq + d) where

A =


−2 1
1 −2 1

. . .
1 2

 , d =


q(0)
0
...

q(1)

 .

On the other hand, q̇ can also be expressed as a function of [q1, · · · , qN−1]
⊤. Thus the discretization

for q̈ + f(q, q̇) = 0 can be written in the form

Aq + h2f(q) + d = 0.

This a nonlinear equation in q, which can be solved using e.g., Newton’s method. Alternatively, one
can use the so called shooting method.

Let us derive the geodesic equation on the ellipsoid x2 + y2 + z2

4 = 1. A point on the ellipsoid can
be described by two angles: draw the segment connecting the point and the origin, whose length is d.
Let ϕ be the angle between this segment and the z axis. Then project the point to the xy-plane and
connect this point with the origin using another segment. The angle between this segment and the
x-axis is denoted θ. The the point is

x = d sinϕ cos θ

y = d sinϕ sin θ

z = d cosϕ.

Since x2 + y2 + z2

4 = 1, we can find

d2(sin2 ϕ+
cos2 ϕ

4
) = 1
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Figure 1: Ellipsoid.

or
d =

1√
1 + 3 sin2 ϕ

.

Thus

x =
sinϕ cos θ√
1 + 3 sin2 ϕ

y =
sinϕ sin θ√
1 + 3 sin2 ϕ

z =
cosϕ√

1 + 3 sin2 ϕ

Let wθ = ∂w
∂θ and wϕ = ∂w

∂ϕ where w can be x, y, z. Then
Given a curve on the ellipsoid described by t 7→ (ϕ(t), θ(t)), we can calculate the length of the

curve: ∫ 1

0

√
ẋ2 + ẏ2 + ż2dt =

∫ 1

0

√
(x2

θ + y2θ + z2θ)θ̇
2 + (x2

ϕ + y2ϕ + z2ϕ)ϕ̇
2dt.

To get the geodesic between two fixed points, it is equivalent to minimize

J(θ(·), ϕ(·)) :=
∫ 1

0

(x2
θ + y2θ + z2θ)θ̇

2 + (x2
ϕ + y2ϕ + z2ϕ)ϕ̇

2dt.
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Now
∂L

∂θ
= 2(xθxθθ + yθyθθ + zθzθθ)θ̇

2 + 2(xθxϕθ + yϕyϕθ + zϕzϕθ)ϕ̇
2

∂L

∂ϕ
= 2(xθxθϕ + yθyθϕ + zθzθϕ)θ̇

2 + 2(xϕxϕϕ + yϕyϕϕ + zϕzϕϕ)ϕ̇
2

∂L

∂θ̇
= 2(x2

θ + y2θ + z2θ)θ̇

∂L

∂ϕ̇
= 2(x2

ϕ + y2ϕ + z2ϕ)ϕ̇

d

dt

∂L

∂θ̇
= 2(2xθxθθ θ̇ + 2xθxθϕϕ̇+ 2yθyθθ θ̇ + 2yθyθϕϕ̇+ 2zθzθθ θ̇ + 2zθzθϕϕ̇)θ̇ + 2(x2

θ + y2θ + z2θ)θ̈

d

dt

∂L

∂ϕ̇
= 2(2xϕxϕθ θ̇ + 2xϕxϕϕϕ̇+ 2yϕyϕθ θ̇ + 2yϕyϕϕϕ̇+ 2zϕzϕθ θ̇ + 2zϕzϕϕϕ̇)θ̇ + 2(x2

ϕ + y2ϕ + z2ϕ)ϕ̈

Write the EL equation as a boundary value problem:[
θ̈

ϕ̈

]
+ f

([
θ
ϕ

]
,

[
θ̇

ϕ̇

])
= 0

with fixed boundary conditions. Then after discretization, we may use Newton method to solve the
boundary value problem.

2) To apply the shooting method, we assume (θ̇(0), ϕ̇(0)) = (b1, b2) for some initial value and
then use ode45/23 to solve the initial value problem to get (θ(1), ϕ(1))⊤ – depending on (b1, b2).
Note that (θ(1), ϕ(1)) is a function of (b1, b2), say (θ(1), ϕ(1))⊤ = F (b1, b2). Define G(b1, b2) :=
||F (b1, b2) − (θ(1), ϕ(1))⊤||2, then it suffices to find the root of G. The apply for example gradient
descent method to solve the nonlinear equation:

b
(k+1)
1 = b

(k)
1 − γ1

G(b
(k)
1 , b

(k)
2 )−G(b

(k−1)
1 , b

(k)
2 )

b
(k)
1 − b

(k−1)
1

b
(k+1)
2 = b

(k)
2 − γ2

G(b
(k)
1 , b

(k)
2 )−G(b

(k)
1 , b

(k−1)
2 )

b
(k)
2 − b

(k−1)
2

Exercise 6 (Hamiltonian equation). Recall the Hamiltonian equation:

q̇ =
∂H

∂p
(q, p)

ṗ = −∂H

∂q
(q, p)

where q, p ∈ Rn. Let ϕt be the flow of the system. That is, (q(t), p(t)) = ϕt(q0, p0) for the initial
condition (q0, p0).

1) For functions H1, H2 : Rn × Rn → R, define the Poisson bracket between H1 and H2 as

{H1, H2} =

n∑
i=1

∂H1

∂qi

∂H2

∂pi
− ∂H1

∂pi

∂H2

∂qi
.

Show that for any real function f on Rn × Rn, f satisfies the ordinary differential equation along the
Hamiltonian system:

ḟ = {f,H}.
2) Given a bounded set U ⊆ Rn × Rn, define

Ut = ϕt(U)

Show that the volume of Ut is constant. Hint: use the transport equation: consider a system ẋ = f(x),
and let ϕt : Rn → Rn be its flow, then for any bounded set D ⊆ Rn,

d

dt
vol(ϕt(D)) =

∫
ϕt(D)

divfdx.
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3) Assume that there exists a bounded forward invariant set D ⊆ Rn × Rn of the Hamiltonian
system. Then for any open set U ⊆ D, and any s > 0, there exists at least one point x ∈ U which
returns to U after some time t ≥ s.

4) The Hamiltonian equation has time-dependent version

q̇ =
∂H

∂p
(q, p, t)

ṗ = −∂H

∂q
(q, p, t)

Show that the energy is not preserved.
5) The Hamiltonian equation can be generalized to[

q̇
ṗ

]
=

[
0 I
−I −R(q)

][∂H
∂q
∂H
∂p

]
+

[
0

G(q)u

]
where u is an input and R, G are matrices. Assume that H ≥ 0 . Show that the matrix R(q) plays
the role of energy damping/injection – depending on sign. Show that the system is dissipative if R is
semi-positive definite, in the sense that there exists an output y such that

−
∫ ∞

∞
y⊤(t)u(t)dt ≤ H(q(0), p(0)).

That is, the energy that can be extracted from the system via the input output pair (u, y) is less than
the total energy of the system.

Solution. 1) By definition,

ḟ =
∑
i

∂f

∂qi
q̇i +

∑
i

∂f

∂pi
ṗi

=
∑
i

∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

= {f,H}.

2) Differentiate vol(ϕt(D)) and apply the transport equation:

d

dt
vol(ϕt(D)) =

∫
ϕt(D)

div(Hp,−Hq)d(q, p) =

∫
ϕt(D)

∑
i

∂2H

∂pi∂qi
− ∂2H

∂qi∂pi
d(q, p) = 0

3) Define
Uj := ϕjs(U), j = 0, · · · ,m, · · ·

Since D is invariant, Uj ⊂ D for all j ≥ 0. Since Hamiltonian system is volume preserving, and that
D is bounded – having finite volume – then there must exists j, k, say k > j such that

Uj ∩ Uk ̸= ∅

otherwise the total volume of U0, Uj · · · is infinite, a contradiction. Therefore,

ϕjs(U) ∩ ϕks(U) ̸= ∅.

Let x ∈ ϕjs(U) ∩ ϕks(U), then there exist y1, y2 ∈ U such that x = ϕjs(y1) = ϕks(y2). Hence
y1 = ϕ(k−j)s(y2), which says that y2 returns to U after (k − j)s time.

4) Straightforward: dH
dt = ∂H

∂t ̸= 0.
5) Notice

dH

dt
= Hq q̇ +Hpṗ = HqH

⊤
p −Hp(H

⊤
q −R(q)H⊤

p +G(q)u)

= −HpR(q)H⊤
p +HpG(q)u.
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If u = 0, we have
dH

dt
= −HpR(q)H⊤

p

In particular, if R(q) > 0, the energy decreases and when R(q) < 0, the energy of the system increases.
Now assume R(q) > 0, let y = G(q)⊤H⊤

p , and integrate the inequality

dH

dt
≤ y⊤u,

we immediately get

H(x(t)) ≤ H(x(0)) +

∫ ⊤

0

y⊤udt

or

−
∫ T

0

y⊤udt ≤ H(x(0))−H(x(t)) ≤ H(x(0))

where we used H ≥ 0. Now since t is arbitrary, the conclusion immediately follows.

8


