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A Brief History

Early beginning: Bernoulli, Newton, Euler, Lagrange

The Golden Era 1930-39: Department of Mathematics at Univeristy of
Chicago

◮ Refine, polish, streamline - done

Emerging interest in control

◮ The classic field calculus of variations became vitalized
◮ The space race (Sputnik 1957)
◮ Dynamic programming, Bellman 1957 - key idea recursion
◮ Pontryagin’s maximum principle, 1962 - key idea new perturbation
◮ LaSalle’s bang-bang principle
◮ Numerical solutions
◮ Model predictive control

Development often Outside Traditional Academia

Results were often obtain outside traditional academic groups because of
commercial and political influences due to the Second World War.

◮ UK Tizard Mission
◮ MIT Radiation Laboratory
◮ MIT Instrumentation Laboratory - Draper
◮ Rand Corporation
◮ Swedish Defense Industry
◮ FOA
◮ Saab R-System
◮ Lars Erik Zachrisson
◮ TTN Group KTH

The Radiation Lab - MIT The RAND Corporation

Set up as an independent non-profit research organization (Think Tank) for
the US Airforce by Douglas Aircraft Corporation in 1945.

◮ Richard Bellman
◮ Georg Danzig LP
◮ Henry Kissinger
◮ John von Neumann
◮ Condolezza Rice
◮ Donald Rumsfeld
◮ Paul Samuelson

Swedish Defense Industry

◮ Alliansfri i fred och neutral i krig - Non-aligned in peace neutral in war
◮ Stril 60, JA37 Viggen, (Gripen)
◮ FOA 1945

Chemistry, Physics Electronics, Operations research
Bäckebobomben (Boestad, Luthander)
TTN Gruppen KTH Bengt Joel Andersson

◮ Aeronautics KTH Prof Luthander
◮ The Army, Navy and Air force Procurement Agencies (Arme-, flyg-

och marinförvaltningarna)
Avionics Bureau
Missile Bureau

◮ Saab
Saab R-System

◮ Bofors - Gun-sights
◮ Volvo Flygmotor
◮ The Electronics Industry

AGA, Arenco, Ericsson, Philips, TUAB

FOA

Missile guidance
Thorvald Persson
Lars Erik Zachrisson
Syftbäringsprincipen

Inertial navigation
Philips, AGA, Saab
MIT Draper
KJ learns automatic
control (Philips)

Analog simulation
Jonas Agerberg
SAMS, ADA

Nuclear reactors and weapons
Grindsjön

Brodin, Persson and Jahnberg

RB 04 early sea missile
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Saab R-System

◮ Airplanes changed from weapon carriers to systems
◮ R-System formed at Saab 1954, inspired by Rand Corporation
◮ Hans Olov Palme - aerospace engineer from KTH

Enthusiastic, charismatic, visionary leader
◮ Recruited a fantastic talent pool 75 persons in 1955

Strong creativity, broad range and deep knowledge
Tore Gullstrand, Bengt Gunnar Magnusson, Gösta Hellgren, Gösta
Lindberg, Lars Erik Zachrisson, Viggo Wentzel

◮ Three groups: Systems, avionics, special projects
◮ Airborn computers, missile guidance, inertial navigation, simulation,

operations analysis
◮ Electronics industry stated TUAB as a competitor

Lars Erik Zachrisson (Z) 1919-1980

◮ Engineering Physics KTH 1945
◮ FOA 1947-57 missile guidance
◮ Proportional navigation 1946

◮ Markov Games 1955 (Isaac’s 1965)
A tank duel with game theoretic implications, 1955, 1957
Markov games. In advances of Game Theory. Princeton University
Press 1964. Isaacs bok 1965.

◮ Saab R-system 1957-63
◮ Docent in Automatic Control KTH 1959
◮ Professor Optimization and System Theory KTH 1963
◮ Anders Lindquist 1972 (Z:s first PhD student) intellectual grandfather

of Anders Rantzer

Proportional Navigation - Syftbäringsprincipen

How to steer a missile to hit a target?
Constant angle between missile and line-of-sight to target!

0 1 2
0

1

TTN Group

◮ Goal: Understand inertial navigation and guidance

◮ Structure
FFV: Torsten Bergens
FOA: Thorvald Persson
KTH: Bengt Joel Anderson,
Jahnberg, Åslund, KJÅ
Aga, Philips, Saab, Grindsjön

◮ Free-wheeling, chaotic, kulgyrot
◮ Free access to Besk (The only Swedish Computer)
◮ The MIT connection - The Instrumentation Laboratory, Draper,

Markey
◮ Fantastic learning experience BUT many constraints (secrecy)

Optimal Control at Lund 1972-2022

◮ Krister Mårtensson (TD #2 1972)
◮ Torkel Glad (TD #11, 1976)
◮ Bengt Pettersson (TL #2, 1970)
◮ Bo Lincoln (TL #67, 2003)
◮ Sven Hedlund (TL #68 2003)
◮ Mattias Grundelius (TD #71 1995)
◮ Johan Åkesson (TD #81 2007)
◮ Andreas Wernerud (TD #82 2008)
◮ Per-Ola Larsson (TD #88 2011)
◮ Karl Mårtensson (TD #91 2012)
◮ Pontus Gisselson (TD #94 2012)
◮ Fredrik Magnusson (TD #115 2016)
◮ Martin Morin (TD #138 2022)
◮ Hamed Sadeghi (TD #139 2022)

Books - Calculus of Variations

◮ Oskar Bolza - Lectures on the Calculus of Variations Based on
Lectures from 1901 reprinted by Dover1906

◮ Gilbert A Bliss - Lectures on the Calculus of Variations AMS 1946 -
Good symmary of Chicago School

◮ Marston Morse -The Calculus of Variations in the Large AMS 1934 -
Excellent book

◮ Constantin Carathe’odory - Calculus of Variations and Partial
Differential Equations of the First Order 1965- Good Classic

◮ I. M. Gelfand and S. V. Fomin - Calculus of Variations 1963 - Excellent
◮ Goldstine, Herman H. . A History of the Calculus of Variations from

the 17th through the 19th Century 2012, Springer - Good coverage of
history

◮ Young L C - Calculus of Variations Saunders 1969 - Good classic
◮ Rawlings J B, Mayne D and Diehl M M - Model Predictive Control:

Theory, Computation, and Design 2nd Edition, Nob Hill 2022

Books - Optimal Control

◮ M. Athans, P. L. Falb 1966 - Optimal Control
◮ K. J. Åström 1970 Introduction to Stochastic Control Theory
◮ A. E. Bryson, Y.C. Ho 1979 - Applied Optimal Control: Optimization,

Estimation and Control
◮ D. Liberzon 2012 - Calculus of Variations and Optimal Control Theory

- Good mix chosen textbook for the course

H. S. Tsien - Engineering Cybernetics 1954
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Tsien - Engineering Cybernetics

◮ Introduction
◮ Method of Laplace Transform
◮ Input Output and Transfer

Function
◮ Feedback Servomechanism
◮ Noninteracting Control
◮ AC and Oscillating Control

Servos
◮ Sampling servomechanisms
◮ Linear Systems with Time

Lag
◮ Linear Systems with Random

Inputs

◮ Relay Servomechanisms
◮ Nonlinear Systems
◮ Linear Systems with Variable

Coefficients
◮ Control Design by

Perturbation Theory
◮ Control Design with Specified

Criteria
◮ Optimalizing Control
◮ Filtering of Noise
◮ Ultra- and Multi-stability
◮ Control of Error
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Calculus of Variations - The Beginning

◮ John Bernoulli: The brachistochrone problem 1696
◮ Let a particle slide along a frictionless curve. Find the curve that

takes the particle from A to B in the shortest time.

J(y) =
∫ B

A

√
1+ y′2√
2�y

dx =
∫ B

A
L(y, y′)dx

◮ Solved by: John and James Bernoulli, Newton, l’Hospital
◮ Euler: Isoperimetric problems. Example largest area with given

circumference.
◮ Functionals: Curve→ R
◮ Functional analysis
◮ Gilbert A. Bliss Lectures on the Calculus of Variations. University of

Chicago Press 1946.

Typical Problem - Euler’s Equation
Consider

J(y) =
∫1

0
L(y, y′)dx

Find a function y(x) that minimizes J(y).
The first variation

δ J =
∫1

0

(�L
�y δ y+ �L

�y′δ y′
)

dx

= �L
�y′δ y

∣∣∣
1

0
+

∫1

0

(�L
�y −

d
dx
�L
�y′

)

δ y dx

Necessary conditions - Euler Lagrange equation:

�L
�y −

d
dx

(�L
�y′

)

= 0 �L
�y′ = 0 for x = 0 and x = 1

Two point boundary value problem for ODE

A Fundamental Difficulty

Assume that ... exist then ...

What if it does not exist!!!

Prove that the largest integer is N=1. (N2 ≤ N, N ≤ 1)

Conjugate points - Ex shortest distance between north and south pole

Lagrange’s mistake

See L. C. Young Lectures on the Calculus of Variations and Optimal
Control Theory. W. B. Saunders 1969

Another View - the Hamilton-Jacobi Equation

J(y, t) =
∫ t

0
L(y, y′)dt

For mechanical systems the function L can be interpreted as the sum of
kintetic T(ẋ) and potential energy V(x) energy.

We have

J(y, t) =
∫ t

0
L(y, y′)dt, �J

�t = L(y, y′) + �J
�y

dy
dt

Introduce the Hamiltonian

H(y, y′, p) = L(y, y′) + py′ H0(y, p) = min
y′

H(x, y′, p)

The function J satisfies the partial differential equation

�J
�t + H0

(

y, �J
�y

)

= 0, J(y, 0) = 0

the Hamilton-Jacobi equation, hence initial value problem for a PDE.

Calculus of Variations - Compact notation

Consider

J(y, t) =
∫ t

0
L(y, y′)dt

Introduce

H(y, y′, p) = L(y, y′) + py′ H0(y, p) = min
y′

H(x, y′, p)

Euler-Lagrange equation

dy
dx =

�H0

�p
dp
dx = −

�H0

�x

Hamilton-Jacobi equation

�J
�t + H0

(

x, �J
�x

)

= 0, J(y, 0) = 0

Physics

◮ Formulate natural laws
◮ Optics - Light passes the shortest way
◮ Underwater acoustics
◮ Mechanics
◮ Strength of materials
◮ Light rays or waves
◮ Hamilton and Jacobi
◮ Special relativity theory
◮ The Lorenz metric
◮ The general theory of relativity
◮ Control
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Optics

Law: Light passes between two points in the shortest time.

Assume that velocity is space dependent

J(y) =
∫ B

A

ds
v =

∫ B

A

√
1+ y′2

v(x, y) dx

Standard problem with

F(x, y, y′) =
√

1+ y′2
v(x, y)

Examples

◮ v constant: straight line
◮ v piecewise constant: reflection law
◮ v affine in y: circular paths (submarine hunting)

Work out these cases!

Mechanics
Kinetic energy T = T(x, ẋ)
Potential energy V = V(x)
The Lagrange function

L(x, ẋ) = T(x, ẋ) − V(x)

Equations of motion
d
dt
�L
� ẋ −

�L
�x = 0

Compare with the Euler equations! Hence the Euler-Lagrange Equation.

Example: Mass on a spring.

L(x, ẋ) = m
2 ẋ2 − k

2 x2

The equation of motion

m d2 x
dt2 + kx = 0

Strong Impact on Physics and Engineering

◮ Natural way to formulate natural laws
◮ Optics
◮ Mechanics - Euler-Lagrange Equations
◮ Strength of materials
◮ Light rays or waves - Hamilton and Jacobi
◮ Special relativity theory - The Lorenz metric
◮ The general theory of relativity
◮ Optimal control
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Optimal Control

dx
dt = f (x, u), min

u
J(u) = G(x(T)) +

∫T

0
�(x(t), u(t))dt

Hamiltonian

H(x, p, u) = �(x, u) + pT f (x, u), H0(x, p) = min
u

H(x, p, u)

Euler-Lagrange-Pontryagin (particle view)

dx
dt =

�H0

�p , x(0) = a

dp
dt = −

�H0

�p , p(T) = G′(x)

Hamilton-Jacobi-Bellman (wave view)

�J
�t + H0

(

x, �J
�x

)

, J(x, T) = G(x)

Three Giants

Leonhard Euler
1707-1783

Joseph-LouisLagrange
1706-1813

Lev Pontryagin
1908-1988

Particle View - ODE

Three More

William Rowan
Hamilton

1805-1865

Karl Gustav Jacobi
1804-1851

Richard Bellman
1920-1984

Wave and energy views - PDE

Optimal Control and Calculus of Variations

◮ Very similar
◮ Different variations (norms)
◮ Classical: free choice of (optimization variable) u
◮ Optimal control: choice of u restricted dx

dt = f (x, u)
◮ No reason to deal with the special case f (x, u) = u
◮ Optimal control is a very natural formulation
◮ Numerical computing
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Numerical Calculations

◮ Two point boundary value problem for ordinary differential equation or
initial value problem for partial differential equation

◮ Shooting
◮ Special iteration for minimum time problems
◮ Iteration in the space of control signals
◮ First and second variations
◮ Parameterize the control signal
◮ Collocation methods

Brysons Flight Test

Bryson (Professor at Harvard) made major computations and a flight test:
How to reach a given height in minimum time?

Flew higher than ever before!
Reached the height twice as fast as with standard flight procedure!

Computations

Efficient computations of optimal control is a subspeciality of its own.
Pontus at our department is a a very good researcher, he should give a
guest lecture!
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The Problem

Consider a system governed by the stochastic differential equation (SDE)

dx = f (x, u, t)dt+ σ (x, u, t)dwh

Find a control law such that u(t) is a function of
Xy = {x(τ), 0 ≤ τ ≤ t}, which minimizes the criterion

J(x, t) = min
u

E
(

∫ t f

0
�(x(τ), u(τ),τ)dτ + G(x(t f ), t f )

)

when the admissible controls are such that u(t) is a function of
x(τ), 0 ≤ τ ≤ t. Since the process x is a Markov process It follows that
the optimal control is simply a function u(t) = f (x(t)), older values of x
do not help!

Mean Value of Quadratic Form

Let x be normal N(m, R) then

ExT Sx = mT Sm+ tr S R

We have

ExT Sx = E(x−m)T S(x−m) + EmT Sx+ ExT Sm− EmT Sm
= Etr (x−m)T S(x−m) +mT Sm
= Etr S(x−m)(x−m)T +mT Sm
= tr S E(x−m)(x−m)T +mT Sm
= tr S R +mT Sm

Dynamic Programming 1

Consider a system governed by the SDE

dx = f (x, u, t)dt+ σ (x, u, t)dw

Introduce the cost to go

J(x, t) = min
u

E
(

∫ t f

t
�(x, u,τ)dτ

∣∣∣ x(t) = x
)

and assume that it is sufficiently smooth. Bellman’s principle of optimality
becomes

J(x, t) = min
u

E
(∫ t+h

t
�(x(τ), u,τ)dτ +

∫ t f

t+h
�(x(τ), u(τ),τ)dτ

∣∣∣x(t) = x
)

= min
u(t,t+h)

E
(∫ t+h

t
�(x(τ), u(τ),τ)dτ + J

(

x(t+ h), t+ h
)

)

px(t) = x
)
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Dynamic Programming 2
We have

J(x, t) = min
u

(

E
∫ t+h

t
�(x(τ), u(τ),τ)dτ+V(x(t+h), t+h)

∣∣∣ x(t) = x
)

A series expansion of the right hand side gives (dw has magnitude
√

dt)

min
u

(

�dt+ JT
x dx+ 1

2 EdxT Jxxdx+ Vtdt+ O(dt3/2)
)

= 0

We have

EdxT Jxxdx = Etr dxT Jxxdx = Etr JxxdxdxT

= tr Jxx E( f dt+ σ dw)( f dt+ σ dw)T

= tr Jxxσσ T dt+ o(dt)

pHence

min
u

(

�dt+ JT
x f dt+ 1

2tr Jxxσσ T dt+ Jtdt+ o(dt)
)

= 0

Dynamic Programming 3

Summarizing we have

0 = min
u

(

�dt+ V T
x f dt+ 1

2tr Vxxσσ T dt+ Vtdt+ o(dt)
)

Neglecting terms smaller than dt and dividing by dt gives

Vt +min
u

(

V T
x f (x, u, t) + 1

2tr Vxxσ (x, u, t)σ T(x, u, t) + �(x, u, t)
)

= 0

which is called the Hamilton-Jacobi-Bellman equation. The boundary
condition is

V(x, t f ) = G(x)

Compact Notation

Hamiltonian

H(x, p, Q, u) = �(x, u) + pT f (x, u, t) + 1
2tr Qσ (x, u, t)σ T(x, u, t)

Minimal Hamiltonian

H0(x, p, Q) = minu H(x, p, Q.u)

Hamilton-Jacobi-Bellman equation

�V
�t + H0(x, p, Q) = 0, Vt f = 0

Comparison Deterministic and Stochastic
Deterministic

dx
dt = f (x, u, t)

V(x, t) = min
(

∫ t f

t
�(x(τ), u(τ),τ)dτ + G(x(t f ), t f )

)

Vt +min
u

(

V T
x f (x, u, t) + �(x, u, t)

)

= 0

Stochastic

dx = f (x, t)dt+ σ (x, t)dw

V(x, t) = min E
(

∫ t f

t
�(x(τ),τ)dτ + G(x(t f ), t f )

∣∣∣ x(t) = x
)

Vt +min
u

(

V T
x f (x, u, , t) + 1

2tr Vxxσ (x, u, t)σ T(x, u, t) + �(x, u, t)
)

= 0

One extra term appears in the Hamilton-Jacobi-Bellman equation in the
stochastic case because of dt ∼

√
dt

Some Interesting Problems

◮ Bryson’s record flight
◮ Satellite launch - enabling space exploration
◮ The container problem by Krister Mårtensson. How to move a

hanging load, much work done later in Luleå.
◮ Mill wide control - Control of paper production by Bengt Pettersson.

Interesting to formulate criteria that gives few changes of control
variables.

◮ Tetrapak - how to fill milkboxes quickly. A method that utilize tilting of
the container is developed. It enables faster movements with less
slosh. The methods simultaneously calculates the horizontal and
rotational acceleration references by solving a minimum energy
optimal control problem. Experiments show that the method is
successful if the maximum allowed surface elevation is not too large.

The Sloshing Problem

Grundelius, Mattias LU (2001) PhD Thesis TFRT-1062

The work presented is focused on development of systematic methods for
calculation of acceleration references that move the container as fast as
possible without too much slosh. The methods are based on a simple
model of the slosh phenomenon which is derived from fluid dynamics and
system identification. The acceleration reference is calculated both directly
using optimal control techniques with various cost functions and
constraints and iteratively using iterative learning control. To enable
practical evaluation of the acceleration references and the use of iterative
learning control an experimental setup has been used where it is possible
to measure the surface elevation on one side of the container using an
infrared laser displacement sensor. The experimental evaluations show
that it is possible to achieve fast movements by solving a minimum energy
optimal control problem and tuning of the model parameters. Iterative
learning control methods are successful in finding good acceleration
references in practice using only a simple model of the slosh phenomenon.

PRODUCTION CONTROL OF A PULP AND PAPER MILL

Bengt Pettersson lic-avhandling, report 7007 sept 1970. A mathematical
model of the mill is developed in the form of an ODE with 10 states and 9
control variables. The scheduling problem is formulated as a deterministic
optimization problem. A solution based on the Pontryagin maximum
principle was developed, leading to a boundary value problem which is
reformulated as a linear programming problem with 50 rows and 40
columns. The numerical algorithm developed is feasible to run on a
process computer. The off-line execution time is about 20 minutes on an
IBM 1800. The production control system was irnplemented at the Gruvon
paper mill in November 1969. It has been in continuous operation since
then. Experience from the first six months of operation is described.
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Conclusions

◮ Nice theory with many connections
◮ Elegant formalism in terms of the Hamiltonian function
◮ Two approaches

Euler-Lagrange-Pontryagin - ODE
Hamilton-Jacobi-Bellman - PDE

◮ No reason to study classical calculus of variations and optimal control
separately

◮ Nice software available
◮ Computational power is available
◮ Model Predictive Control - a recent addition
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