
4 Lecture 4. Misc topics on MP and the proof of the MP
In the previous lecture, we studied the maximum principle. The main result is the following theorem.

Theorem 1. Consider the system ẋ = f(x, u) with cost function

J(u) = φ(x(tf )) +

∫ tf

0

L(x, u)dt

and boundary constraint
x(tf ) ∈ M ⊆ Rn

Assume f , φ and L are C1 in x. Let (x∗(·), u∗(·)) correspond to the optimal solution to the minimiza-
tion problem

min
u∈Uad

J(u)

in which Uad = {u : [0, tf ] → U ⊆ Rm}. Define the Hamiltonian function

H(x, u, p, p0) = p⊤f(x, u) + p0L(x, u)

Then there exists a function p∗ : [0, tf ] → Rn and a constant p∗0 ∈ {0,−1}, satisfying (p∗0, p
∗(t)) ̸≡ (0, 0)

such that
1) (x∗(·), p∗(·)) satisfies the canonical equation

ẋ = H⊤
p

ṗ = −H⊤
x

with initial condition x∗(0) = x0. The second equation is called the costate equation, and p is the
costate.

2) The transversality condition holds:

p∗(tf ) + φ⊤
x (x

∗(tf )) ⊥ Tx∗(tf )M.

3) The maximum principle holds:

H(x∗(t), u∗(t), p∗(t), p∗0) = max
u∈U⊆Rm

H(x∗(t), u, p∗(t), p∗0) = constant (1)

for all t ∈ [0, tf ]. In particular, this constant is zero if tf is free.

We ended with the lunar lander example. But in fact, there was another important example that
I wanted to show you, which is the example of time optimal control.

4.1 Time optimal control
Time optimal control is an important problem in engineering, which seeks for the optimal control that
renders the system from current state to the target in minimal time under given constraints. The cost
function for time optimal control is

J = tf =

∫ tf

0

1dt.

We impose a terminal constraint x(tf ) ∈ S. This is an optimal control problem with free terminal
time tf . We focus on the case when S is a singleton. The general case is essentially the same.

It is worth mentioning that the time optimal control problem is closely related to controllability and
stabilizability. Loosely speaking, the system is controllable (to the target) if and only if min J < ∞.
Thus optimal control is an important tool in studying controllability and stabilization. Now we consider
the following system which is affine in the input:

ẋ = f(x) + g(x)u

where u ∈ Rm. The constraint for u is |ui| ≤ 1 for all i = 1, · · ·m. This model is quite general and
includes most of the control systems that we meet and is thus reasonable to work with.
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The Hamiltonian for the system is

H = p⊤(f(x) + g(x)u) + p0 = p⊤f(x) +

m∑
i=1

ui(p
⊤gi(x)) + p0

The costate equation is

ṗ = −(f⊤
x +

m∑
i=1

uig
⊤
ix)p.

And there’s no transversality condition. Good thing is that we don’t need to discuss abnormal ex-
tremals: H depends trivially on p0.

Recall that |ui| ≤ 1, the maximum principle can be seen as a linear programming on a convex set
since u is affine in this case. In our case, (in general, u can be constrained in a polytope)

u∗
i (t) =


1, p⊤(t)gi(x

∗(t)) > 0

−1, p⊤(t)gi(x
∗(t)) < 0

? p⊤(t)gi(x
∗(t)) = 0

.

So typically, the optimal control switches between 1 and −1, except at those time instants that
p⊤(t)gi(x

∗(t)) = 0. Such control is named bang-bang control (a control whose components are ei-
ther 1 or −1). A critical issue here is that we don’t know the optimal control when p⊤(t)gi(x

∗(t)) = 0.
If the function γ(t) = p⊤(t)gi(x

∗(t)) has only finite zeros, that is fine, the input at those finite points
can be taken arbitrarily. In this case, we say that the optimal solution is normal. But if γ is zero on
some interval [t1, t2], then you cannot choose the control arbitrarily on that interval. Such control on
[t1, t2] is called singular, and the corresponding trajectory x∗|[t1,t2] is called a singular arc.
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Figure 1: Normal control and singular control

The existence of singular arcs is a bit unpleasant because in this situation, the maximum principle
does not tell us the information of the optimal control. Therefore, it would be nice to have some prior
test to exclude the existence of singular arcs. Fortunately, for most control systems, singular arcs do
not exist and there are simple criteria to check this. For example, we consider the linear system

ẋ = Ax+Bu, u ∈ Rm, |ui| ≤ 1,

For this system gi = bi and the Hamiltonian is H(x, u, p, p0) = p⊤(Ax+Bu)+p0. The costate equation
reads

ṗ = −A⊤p.

The condition under which singularity happens is when

p⊤(t)bi(x
∗(t)) = 0, ∀t ∈ [t1, t2]. (2)
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Note that if (2) is to be satisfied, its derivatives of any order should also be zero. For instance,

p⊤bi = 0,

p⊤Abi = 0,

...

p⊤Akbi = 0

or

p⊤


bi
Abi
...

An−1bi

 = 0.

Thus if the system pair (A, bi) is controllable, p(t) ≡ 0, thus p0 = −1 and 0 = H(x∗(t), u∗(t), p∗(t),−1) =
p0 = −1, since tf is free. This is a contradiction. Thus there is no singular arc.

Claim 1. For the linear system, if (A, bi) is controllable for all i, then there is no singular arc. We call
such system a normal system.

Example 1 (Double integrator, normal system). Consider a double integrator

ẋ1 = x2

ẋ2 = u

with initial condition (ξ, η). The objective is to drive the initial condition to the origin x(0) = (0, 0)
in minimal time under the constraint |u| ≤ 1. The first observation is that the system is a single input
system which is controllable. Thus there exists no singular arc.

The Hamiltonian is H = p1x2 + p2u+ p0. The costate equation reads

ṗ1 = 0

ṗ2 = −p1

Thus p1 = c1, p2 = −c1t+ c2 for some constants c1 and c2, and

u∗(t) = sign(p2(t)).

There are four possibilities for the control sequence: 1) (−1, 1); 2) (1,−1); 3) (1); 4) (−1). The last
two are special cases of the first two and it suffices to discuss the first two cases.

Case 1): In this case, c1 < 0. At the switching time ts, −c1ts + c2 = 0, hence ts = c2/c1, from
which we see that c2 > 0. Now integrate the system from the initial state (ξ1, ξ2) to get{

x2(t) = ξ2 − t,

x1(t) = ξ1 + ξ2t− 1
2 t

2
, t ∈ [0, ts]

and {
x2(t) = ξ2 − 2ts + t,

x1(t) = ξ1 + ξ2ts − 1
2 t

2
s + (ξ2 − 2ts)(t− ts) +

1
2 (t

2 − t2s)
, t ∈ (ts, tf ]

In view of the terminal condition x1(tf ) = x2(tf ) = 0, we get an equation{
ξ2 − 2ts + tf = 0,

ξ1 + ξ2ts − 1
2 t

2
s + (ξ2 − 2ts)(tf − ts) +

1
2 (t

2
f − t2s) = 0

from which we can solve

ts = ξ2 ±
√
ξ1 +

ξ22
2
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provided that

ξ1 +
ξ22
2

> 0.

When ξ1 +
ξ22
2 = 0, (ξ2 must be negative) then there is no switching and the control sequence is

(−1) for all t ≥ 0. Otherwise, there is one switch. For ξ2 < 0, in order that ts > 0, we must have

ts = ξ2 +

√
ξ1 +

ξ22
2 and ξ22 < ξ1 +

ξ22
2 , or ξ1 >

ξ22
2 .

When t ∈ [0, ts), we see

x1 = −1

2
x2
2 + const,

therefore, we can draw the phase plot as in Figure 2.

Figure 2: Minimal time double integrator

Case 2) is done in exactly the same way.
Ok, this is the unfinished work of the last lecture. Now, I want to discuss some extensions of the

MP and some theoretical aspects that are worth mentioning.

4.2 Some extensions of the maximum principle
4.2.1 Time varying cost

Up until now, we have always been focused on time invariant systems. Let’s see if our MP can also
be extended to time varying systems with possibly time varying costs. For that, let us consider the
system

ẋ = f(t, x, u), x ∈ Rn

with cost function

J(u) = φ(T, x(T )) +

∫ T

0

L(t, x(t), u(t))dt.

If we introduce a new variable xn+1 := t, then the original system can be written as[
ẋ

ẋn+1

]
=

[
f(xn+1, x, u)

1

]
which turns into time invariant. The cost functional becomes

J(u) = φ(xn+1, x) +

∫ T

0

L(xn+1, x, u)dt
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which is too, time invariant. The constraints, initial conditions etc., shall also be put into the new
coordinate, e.g., the initial condition [

x(0)
xn+1(0)

]
=

[
x0

0

]
and the terminal constraint xn+1(T ) > 0. After this, it is enough to apply the MP for time invariant
system. For example, in this case

H(x, xn+1, u, p, pn+1, p0) = p⊤f(xn+1, x, u) + pn+1 + p0L(x, xn+1, u).

The costate equation is

ṗ = −H⊤
x

ṗn+1 = −Hxn+1

and the maximum principle

H(x∗(t), t, u∗(t), p∗(t), p∗n+1(t), p
∗
0) = max

u
H(x∗(t), t, u, p∗(t), p∗n+1(t), p

∗
0).

Example 2 (Paper mill production [5]). The paper mill production system (suggested by Karl Johan)
can be described by a linear system of the form

ẋ = Cv(t) +Bu

where x(t) ∈ Rn represents the tank levels in the system, i.e., the state that needs to be controlled,
v(t) ∈ Rm is the given paper production – a time varying signal and u is the control input. The
constraint for control input is u(t) ∈ Ωu for some convex polytope Ωu. The control objective is to
minimize

J =

∫ 1

0

m∑
i=1

|ui(t)− ai(t)|dt

for some given time varying signal a(·). As pointed out in [5], due to the structure of the cost functional,
this problem can be turned into a LP.

4.2.2 State constraints

In the present form of the maximum principle, there does not involve any state constraint. However,
state constraint is extremely important in practical problems. Fortunately, there is one type of state
constraints that can be easily handled, namely, the mixed input and state constraint. In this setting,
the constraint is described by variable control region, say u(t) ∈ U(x(t)) for all t.

Fortunately, the maximum principle also holds for variable control region in the sense that if the
input space U at each moment is a function of the state, say U(x) ⊆ Rm, the MP still holds by merely
changing the maximum principle to

H(x∗(t), u∗(t), p∗(t)) = max
u∈U(x∗(t))

H(x∗(t), u, p∗(t))

and leaving the rest unchanged.

Example 3 (Rayleigh problem). Consider minimizing

J =

∫ tf

0

(u2 + x2
1)dt

subject to (the controlled van de Pol oscillator):

ẋ1 = x2,

ẋ2 = −x1 + x2(1.4− 0.14x2
2) + 4u

with initial condition (x1(0), x2(0)) = (−5,−5), tf = 4.5 and a mixed input and state constraint:

−1 ≤ u(t) +
x1(t)

6
≤ 0.
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The Hamiltonian (assume there’s no abnormal extremals) for this problem is

H(x, u, p) = p1x2 + p2(−x1 + x2(1.4− 0.14x2
2) + 4u)− (u2 + x2

1)

and the costate equation is

ṗ1 = p2 + 2x1

ṗ2 = −p1 − p2(1.4− 0.42x2
2)

with boundary condition p1(tf ) = p2(tf ) = 0. The maximum principle says

u∗(t) = arg max
−1−≤u+

x∗
1(t)

6 ≤0

(−u2 + 4p2u).

Thus in principle one can solve this problem by solving the canonical equation together with the NLP.
Since in principle, you can solve u∗(t) as a function of p2, then we substitute u∗ into the system
equation. At last the canonical equation becomes autonomous with know initial or terminal condition
which can be solved numerically.

There is also another type of constraints which is much harder and admits only limited solution:
pure state constraint

gi(x(t)) ≤ 0, i = 1, · · · , k.

Unlike the mixed input state case, this situation is quite hard to solve in general. Normally, this is
solved by discretization and then solving the problem as a nonlinear programming problem. There do
exist some interesting results regarding MP with pure state constraints, interested readers may refer
to a survey paper [3] or a more recent online tutorial [4]. The basic idea is to take the differential of
gi until the input appears explicitly in the expression an then treats the constraint as a mixed state
input constraint.

4.2.3 Existence of optimal control

There is still the problem of existence of optimal controller that we haven’t answered yet. You remember
the contradiction that Karl Johan posed in the first lecture, which says that if there does not exist an
optimal controller, then the necessary condition may not make any sense. Fortunately, in practice, for
most of the time, it’s quite safe to apply the MP directly without checking the existence of an optimal
controller. This is because we don’t need very strong assumptions to guarantee the existence of an
optimal controller. The following condition is an easily understandable one.

Assumption (H). The set U ⊆ Rm is compact, f : Ω×U → Rn is continuous in (x, u) and C1 in
x. And that f has linear growth bound on x:

|f(x, u)| ≤ C(1 + |x|)

on Ω× U for some constant C. (Recall that linear growth bound guarantees forward completeness)
Now consider the optimal control problem:

J(u) = φ(x(tf )) +

∫ tf

0

L(x, u)dt

with admissible input set
Uad = {u : R≥0 → U}

and terminal constraint x(tf ) ∈ S ⊆ Rn. We have the following useful theorem:

Theorem 2. Let the assumption (H) hold. Assume S is closed and reachable1, φ and L are contin-
uous. If the sets

F (x) := {(y0, y) ∈ Rn+1 : y0 ≥ L(x, u), y = f(x, u) for some u ∈ U}

are convex, then the above problem has an optimal solution.
1There exists at least one controller in Uad which drives the initial condition to the set S.
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Example 4 (Linear system). Consider the linear system

ẋ = Ax+Bu

with costs

J1 = L⊤
f x(tf ) +

∫ tf

0

L⊤x+ S⊤udt

and

J2 = x⊤(tf )Qfx(tf ) +

∫ tf

0

x⊤Qx+ u⊤Rudt

for some R > 0. The input is constrained on a polytope |ui| ≤ 1 for all i. Then the assumptions of
Theorem 2 are satisfied for both cost functions.

Proof strategy:
Step 1: Let (x(k)(·), u(k)(·)) be a minimizing sequence, i.e., J(u(k)) → infu J(u).
Step 2: Extract a sub-sequence (x(kj)(·), u(kj)(·)) such that x(kj)(·) converges uniformly to some

x∗(·) on [0, tf ]. Then show x∗(·) is an admissible trajectory – this is where the convexity of F (x) is
used.

To readers can refer to [2] for a complete proof.

4.2.4 Sufficient condition

One should always bear in mind that like the EL equation, the maximum principle only provides
sufficient condition for a minimizer. But you have noticed that in all the examples, we never checked
whether the solution obtained by the MP is a true minimizer. The reason behind this is quite simple.
Again, we consider the optimal control of the system

ẋ = f(x, u)

with x ∈ Ω ⊆ Rn and u ∈ U ⊆ Rm, terminal constraint x(tf ) ∈ S, and cost function

J(u) = φ(x(tf )) +

∫ tf

0

L(x, u)dt.

Assumption (H’). The set U ⊆ Rm of control values is compact. The vector filed f, L : Ω×U →
Rn are continuous on Ω× U for some open set Ω ⊂ Rn and are C1 w.r.t. x.

Under this technical assumption, we have the following theorem.

Theorem 3. Let assumption (H’) hold. Assume that an optimal solution exists, and that there are
only finite admissible control functions that satisfy the maximum principle. Then the one which yields
the lowest value of the cost is optimal. In particular, if there is only one solution to the maximum
principle, then that solution is automatically optimal.

Proof. Obvious.

Very nice! In practice, we have noticed that in most problems, the solution to the maximum
principle admits unique solution, therefore by the theorem, that solution is optimal.

4.3 Proof of the maximum principle
Now, let’s make a brief summary. First, we studied the CoV, and then we tried to use CoV to study
the optimal control problem. But there we could only make some conjectures because of the essential
limitations of CoV. To cope with that, we introduced the maximum principle, which turned out to be
quite successful and not so complicated to use. But still, we haven’t yet proved the maximum principle.
In the rest of the time, we will start proving the maximum principle. Before that, I would like to cite
a paragraph written by L.C. Young in his famous book Lectures on the Calculus of Variations and
Optimal Control (1969), a mathematician famous for his work in calculus of variation and optimal
control:
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The proof of the maximum principle, given in the book of Pontryagin, Boltyanskii, Gamkrelidze
and Mischenko... represents, in a sense, the culmination of the efforts of mathematicians, for
considerably more than a century, to rectify the Lagrange multiplier rule.

From this paragraph you can already see that the proof of the MP must not be trivial. But you
will soon see that the ideas of the proof are rather simple. However, these are really great ideas and
are well worth learning.

Remember that we mentioned at least two essential difficulties in CoV. One is that its inefficiency to
handle constraints. The other is that it requires certain smoothness conditions which are too restrictive
in practice. Thus in order to prove the maximum principle, we will need some new tools for doing
nonsmooth analysis. Fortunately, only one non-trivial tool will be sufficient for our purpose, i.e., the
separability of tents.

Tent method

To motivate the idea, we consider a static nonlinear optimization problem:

min g0(x)

subject to gi(x) ≤ 0, i = 1, · · · ,m
(LM)

in which {gi}mi=0 ∈ C1(Rn;R). Suppose that the problem is feasible, i.e., there exists an admissible x∗
which minimizes g0(x).

To solve this optimization problem, it is standard practice to use the so called Lagrangian multiplier
method. Or you can also use CoV that we have introduced previously.

Exercise. Derive the first order necessary condition of the (LM) problem using calculus of variation.

The method of tent is a totally different approach which is very powerful and which works for
non-smooth problems. This method was introduced by Boltyanskii (student of Pontrayagen) and his
colleagues when proving the maximum principle. Let’s see how the method works.

Define the following sets:

Ωi = {x ∈ Rn : gi(x) ≤ 0}, i = 1, · · · ,m

So the constraints can also be expressed as

x ∈ Ω1 ∩ · · · ∩ Ωm.

And for x1 ∈ Rn, let
Ω0 = {x : g0(x) < g0(x1)} ∪ {x1}.

Take the intersection of all these sets

Σ := Ω0 ∩ Ω1 ∩ · · · ∩ Ωm.

We claim that x1 is a minimizer if and only if Σ = {x1}. To see this, suppose x1 is a minimizer,
then gi(x1) ≤ 0 for i ≥ 1 and g0(x1) ≤ g0(x) for all feasible x. Thus x1 ∈ Σ. If there is another
point x2 ∈ Σ, then x2 is feasible and g0(x2) < g0(x1), a contradiction, thus if x1 is a minimizer, there
must hold Σ = {x1}. Conversely, suppose that Σ = {x1}, if x1 is not a minimizer, then either x1

is not feasible or there exists x2 ̸= x1, both feasible such that g0(x2) < g0(x1). For the first case,
x1 /∈ Ω1 ∩ · · · ∩ Ωm, thus x1 /∈ Σ, a contradiction. For the second case, {x1, x2} ⊆ Σ, a contradiction.

As an example, let m = 1 and Figure 3 show two sets Ω0 and Ω1 on a plane. In this figure, Ω1 and
Ω0 intersects only at the point x1. So x1 is a minimizer.
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Figure 3: Separating 2-dim tents.

However, in Figure 4, the the intersection of the two sets contains also some other points. Thus x1

is not a minimizer.

Figure 4: Separating 2-dim tents.

Next, we need the notion of tangent cone. Given a set Ω ⊆ Rn (may be non-convex), the tangent
cone at x ∈ Ω is defined as

TxΩ :=

{
v ∈ Rn

∣∣∣∣ ∃{xi}∞i=1 ⊆ Ω, ∃{ti}⊤i=1 ⊆ R>0, s.t.
ti ↓ 0, xi → x, and (xi − x)/ti → v

}
see Figure 5.

Ω
𝐾𝐾

𝑥𝑥0

Ω

𝐾𝐾

𝑥𝑥0

Figure 5: Tangent cones of convex and non-convex sets Ω.
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In particular, when Ω is a smooth sub-manifold – think of a smooth surface in Rn – then TxΩ is
the tangent space of Ω at x. Hence the notation coincides with tangent space in the smooth case.

Definition 1 (Tent). Given a set Ω and its tangent cone TxΩ at x, a tent is a convex convex cone
K ⊆ TxΩ with apex x.

The reason why we need to use the notion of tent instead of a tangent cone is that a tangent cone
of a set may be non-convex and that non-convex objects are hard to work with. aIn Figure 6, K0

represents the tangent cones while K1 some tents.

𝐾𝐾1

𝑥𝑥0
𝐾𝐾0

𝐾𝐾1

Ω

𝑥𝑥0

𝐾𝐾0

Ω

Figure 6: Tents.

Intuitively, to be able to “separate” Ω0 and Ω1, the tents of the two sets at the intersecting point
should also be separable in the sense that they intersect only at the apex. Or equivalently, there is a
hyperplane passing through x1 which separates Tx1

Ω0 and Tx1
Ω1, see Figure 7.

Figure 7: Separating 2-dim tents.

In Figure 7, let us choose two arbitrary nonzero vectors a0 and a1 perpendicular to the separating
hyperplane such that

a0 + a1 = 0 (3)

Furthermore, we see that
a⊤i (x− x1) ≥ 0, ∀x ∈ Ki, i = 0, 1. (4)
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Figure 8: Tents not separable.

Thus if we can find K0 and K1, we can obtain a necessary condition based on the relation (4). For
problem (LM), this is easy since g0 and g1 are smooth:

Ki = {x : ∇gi(x1)(x− x1) ≤ 0}, i = 0, 1

That is, Ki are half spaces, see Figure 9.

끫毊1
끫歼끫殬

∇끫殨끫殬 끫毊1

Ω끫殬끫殜끫殬

Figure 9: The tents are half spaces.

Therefore, ai must be of the form
ai = λi∇gi(x1)

for λi ≤ 0. Since λi cannot be zero at the same time, λi < 0 for i = 0, 1. Thus the relation (3) becomes

λ0∇g0(x1) + λ1∇g1(x1) = 0

for λ0, λ1 < 0 or
∇g0(x1) + λ∇g1(x1) = 0

for some λ > 0. This is a special case of the famous KKT (Karush-Kuhn-Tucker) condition which we
will be able to prove once we have generalize the above reasoning.
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The separability of tents

We generalize our previous discussions to arbitrary finite many tents.

Definition 2 (Separability). Let K0, · · · ,Kp be some closed, convex cones with a common apex x in
Rn. They are said to be separable if there exists a hyper plane Γ through x that separates one of the
cones from the intersection of the others.

Lemma 1. Let K0, · · · ,Kp be some closed, convex cones with a common apex x in Rn. Then they
are separable if and only if there exist dual vectors ai, i = 0, 1, · · · , p fulfilling2

a⊤i (y − x) ≤ 0, ∀y ∈ Ki

and at least one of which is not zero and such that

a0 + · · ·+ ap = 0.

Lemma 2. Let Ω0, · · · ,Ωp be sets in Rn satisfying

Ω0 ∩ · · · ∩ Ωp = {x},

and K0, · · · ,Kp be tents of these sets at x. If all the tents are convex and that at least one of the tents
is distinct from its affine hull. Then K0, · · · ,Kp is separable.

The proofs of the above two results are quite technical and are hence omitted. Interested readers
are referred to [1].

Problem statement

We start by introducing the optimal control problem under fixed terminal time. First, let us recall our
optimal control problem. We focus on time-invariant control systems:

ẋ = f(x, u), (5)

where x(t) ∈ Rn, u(t) ∈ U ⊂ Rm for all t ∈ [0, tf ], the initial condition x(0) = x0 is assumed to be
fixed. The cost function is

J(u(·)) = φ(x(tf )) +

∫ tf

0

L(x(s), u(s))ds,

where φ(·), f(·, u), L(·, u) are continuously differentiable for all u. The optimal control problem
amounts to finding a process u∗(t), x∗(t), 0 ≤ t ≤ tf , with a (measurable) controller u∗(t) such that
x∗(tf ) ∈ M for some manifold M , and J(u∗(·)) attains a minimum. We say that the problem is in 1)
Mayer form if L = 0; 2) Lagrange form if φ = 0; 3) Bolza form if neither L nor φ is zero.

We claim that the preceding three types of optimal control problems can all be reduced to Mayer
form. In fact, let

xn+1(t) =

∫ t

0

L(x(s), u(s))ds

the system becomes {
ẋ = f(x, u)

ẋn+1 = L(x, u)
(6)

\with initial condition (x0, 0), and the cost function becomes

J = φ(x(tf )) + xn+1(tf ). (7)

This is an optimal control problem of the Mayer form of a time-invariant system. Due to this reason,
it suffices to study the optimal control problem with cost function:

J = φ(x(tf )).

2Note that we can also use a⊤i (y − x) ≥ 0 by reversing the sign of ai, see (4).
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Introduce the following notations which will be used in the proof:

x1 := x∗(tf )

Ω0 = {x1} ∪ {x : φ(x) < φ(x1)}
Ω1 : reachability set from x0

Ω2 = M : the terminal manifold

Let u∗(t), x∗(t), 0 ≤ t ≤ tf be an optimal process. Then it is easily seen that

Ω0 ∩ Ω1 ∩ Ω2 = {x1}. (8)

The reader should immediately realize that such type of condition implies separability of tents of the
three sets, this is the content of Lemma 2. Denote Ki the tent of Ωi at x1. It thus remains to find the
tents Ki. The tents K0 and K2 can be easily computed:

K0 = {x ∈ Rn : ∇φ(x1)(x− x1) ≤ 0}
K2 = Tx1Ω2

(note that Ω2 is a fixed manifold).
Therefore, our problem boils down to calculating the tent of Ω1 at x1: K1. By definition, a tent

is only a convex subcone of the tangent cone of Ω1 at x0, we should however, try to find a tent as
big as possible, since the bigger the tent, the more necessary information it conveys. This is the main
non-trivial step in proving the maximum principle (if we already know Lemma 1, 2) and was first
achieved by Boltyanskii and his colleagues using the so called needle variation.

Needle variation

Suppose at the moment that the optimal control u∗ : [0, tf ] → U is continuous. Fix τ ∈ (0, tf ] and
consider the following needle shaped variation of u∗ for small ε > 0:

uε(t) =

{
w, t ∈ (τ − ε, τ ]
u∗(t), otherwise

where w ∈ U is some constant, see Figure 10.

𝑤𝑤

𝜏𝜏𝜏𝜏 − 𝜀𝜀

𝑢𝑢∗(𝑡𝑡)

Figure 10: Needle variation.

Denote t 7→ xε(t) the solution to ẋ = f(x, uε). Obviously, uϵ(·) is admissible, thus xϵ(tf ) belongs
to the reachable set at tf , i.e., xϵ(tf ) ∈ Ω1 for all ϵ chosen above. Thus by definition, ∂xε(tf )

∂ε

∣∣∣
ε=0+
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must belong to the tangent cone of Ω1. Denote

v(t) =
∂xε(t)

∂ε

∣∣∣∣
ε=0+

, t ∈ [τ, tf ]

then it remains to find v(tf ). We call v(tf ) a deviation vector. To find the deviation vector, first we
need to characterize xϵ(t). Denote vϵ(t) =

∂xε(t)
∂ε , since uϵ(t) = u∗(t) for t ≥ τ , it follows that

dvϵ(t)

dt
=

∂

∂ϵ
f(xϵ(t), u∗(t)) =

∂f

∂x
(xϵ(t), u∗(t))

∂xϵ(t)

∂t

=
∂f

∂x
(xϵ(t), u∗(t))vϵ(t), ∀t ∈ (τ, tf ]

Evaluating at ϵ = 0+, we get v̇(t) = ∂f
∂x (x∗(t), u∗(t))v(t). That is, v(t) satisfies a linear ODE. It still

remains to find the initial condition v(τ). Note that

xε(τ) = x∗(τ − ϵ) +

∫ τ

τ−ϵ

f(xϵ(s), w)ds,

= x∗(τ − ϵ) +

∫ τ

τ−ϵ

f(x∗(s), u∗(s))ds+

∫ τ

τ−ϵ

[f(xϵ(s), w)− f(x∗(s), u∗(s))]ds

= x∗(τ) +

∫ τ

τ−ϵ

[f(xϵ(s), w)− f(x∗(s), u∗(s))]ds

thus

v(τ) = lim
ε→0+

xε(τ)− x∗(τ)

ε

= lim
ε→0+

1

ε

[∫ τ

τ−ε

f(xε(t), w)dt− f(x∗(t), u∗(t))dt

]
(9)

= f(x∗(τ), w)− f(x∗(τ), u∗(τ)).

To summarize, v(·) is the solution to the following Cauchy problemv̇ =
∂f

∂x
(x∗(t), u∗(t))v, ∀t ∈ [τ, tf ]

v(τ) = f(x∗(τ), w)− f(x∗(τ), u∗(τ)).

To construct more deviation vectors, let v1(tf ), · · · , vr(tf ) be some different deviation vectors
obtained as above corresponding to some distinct time instants τ1 < · · · < τr and constant inputs
w1, · · · , wr. Consider the combined needle variation

uε,k(t) =

{
wi, t ∈ (τi − kiε, τi] for some i ∈ {1, · · · , r}
u∗(t), otherwise

where ki are non-negative constants satisfying
∑r

i=1 ki = 1. One can show that

r∑
i=1

kivi(tf ) =
∂x(tf , uε,k)

∂ε

∣∣∣∣
ε=0+

which implies that
∑r

i=1 kivi(tf ) are again in Tx1Ω1. Still call these vectors deviation vectors and
define K1 to be the set of all deviation vectors, i.e.,

K1 =


r∑

i=1

kivi(tf )

∣∣∣∣∣ ∃r ∈ Z+, τi ∈ [0, tf ), wi ∈ U, ki ≥ 0,
∑r

i=1 ki = 1,
vi(tf ) the deviation vector obtained from needle
variation atτi with spike wi


Then K1 is a tent of Ω1 at x1.
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Final step: the costate equation and the maximum principle

Condition (8) implies that K0,K1,K2 are separable. Invoking Lemma 1 and Lemma 2, we deduce that
there exist three vectors ai, at least one of which is nonzero, satisfying

a⊤i v ≤ 0, v ∈ Ki, i = 0, 1, 2 (10)

and
a0 + a1 + a2 = 0. (11)

In particular, a⊤1 v(tf ) ≤ 0 for any deviation vector v(tf ). Now we introduce a small trick: if we are
able to construct some function p : [0, tf ] → Rn such that p(t)⊤v(t) ≡ constant with p(tf ) = a1, then
we obtain immediately p(t)⊤v(t) = a⊤1 v(tf ) ≤ 0 for all t ∈ [0, tf ]. In particular, if v is the deviation
vector obtained by needle variation at time τ with spike w, then v(τ) = f(x∗(τ), w)− f(x∗(τ), u∗(τ).
Thus at t = τ , p(τ)⊤[f(x∗(τ), w)− f(x∗(τ), u∗(τ))] ≤ 0 or

p(τ)⊤f(x∗(τ), u∗(τ)) ≥ p(τ)⊤f(x∗(τ), w)) (12)

For convenience, define
H(x, u, p) := p⊤f(x, u)

which is the Hamiltonian associated with the system . Now that the spike can be any w ∈ U and
t ∈ [0, tf ), it follows from (12) that

H(x∗(t), u∗(t), p(t)) = max
u∈U

H(x∗(t), u, p(t)) = constant, ∀t ∈ [0, tf ). (13)

This is the maximum principle that we have been looking for! Except two things: the interval [0, tf )
doesn’t include the endpoint tf and the function p hasn’t been determined yet. The first issue can be
fixed if everything is continuous in the above formula, which is indeed true as long as we have shown
p is, since f , x∗ and u∗ are continuous as assumed. For the second issue, let us recall the following
simple fact:

Lemma 3. Consider two linear ODE

ẋ = A(t)x

ṗ = −A(t)⊤p

where x, p ∈ Rn. Then p(t)⊤x(t) = p(t′)⊤x(t′) for any t, t′ ∈ R.

With this lemma, we can now construct p to be the solution of the following ODE

ṗ = −
[
∂f

∂x
(x∗(t), u∗(t))

]⊤
p

= −H⊤
x (x∗, u∗, p) (14)

with terminal state p(tf ) = a1 (note that this is exactly the costate equation).
Recall that

K0 = {x ∈ Rn : ∇φ(x1)(x− x1) ≤ 0}
K2 = Tx1

Ω2

For a0, since K0 is a half space, a⊤0 v ≤ 0 for v ∈ K0 implies a0 = λ∇φ(x1)
⊤ for some constant λ ≥ 0.

For a2, since K2 is a sub-manifold, a2 ⊥ K2. It follows from (11) that (recall a1 = p(tf )):

λ∇φ(x∗(tf ))
⊤ + p(tf ) ⊥ Ω2 (15)

for some constant λ ≥ 0.
Up to now, we have prove the maximum principle for the Mayer problem under the assumption

that u∗ is continuous.
For u not continuous, only the condition (13) needs to be modified by noticing that the limits in

(9) exist for almost all t ∈ [0, tf ]. Summarizing, we have proved the following.
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