
Lecture 3. The maximum principle
In the last lecture, we learned calculus of variation (CoV). The key idea of CoV for the minimization
problem

min
u∈U

J(u)

can be summarized as follows. 1) Assume u∗ is a minimizer, and choose a one-parameter variation uϵ

s.t. u0 = u∗ and uϵ ∈ U for ϵ small. 2) The function ϵ 7→ J(uϵ) has a minimizer at ϵ = 0. Thus it
satisfies the first and second order necessary conditions

∂J

∂ϵ
|ϵ=0 = 0,

∂2J

∂ϵ2
|ϵ=0 ≥ 0

because ϵ 7→ J(uϵ) is only a scalar valued function on real line. To facilitate the computation, we
introduced the δ operator which satisfies the following properties:

P1) δ is a differential operator: it satisfies the chain rule, composition rule, etc.

P2) in our setting, δ commutes with the integration and differentiation operators, i.e., δ
∫
=

∫
δ and

δẋ = d
dtδx.

P3) If a function u 7→ J(u) has a minimum at u∗, then the first variation vanishes δJ(u∗) = 0 and
the second variation is non-negative δ2J(u∗) ≥ 0.

If you’re not very satisfied with the δ notation, then you can always use the naive approach. But trust
me, you’ll get exactly the same results.

Then we derived the necessary conditions of the Lagrangian problem:

min

∫ T

0

L(q, q̇)dt

q(0) = q0, q(T ) = q1

Namely,

∂L

∂q
− d

dt

∂L

∂q̇
= 0.

Lq̇q̇ ≥ 0

Using this equation, we were able to solve a number of interesting questions.
Then, for the Lagrangian problem, we introduced an important coordinate transform, i.e., the

canonical transform
p =

∂L

∂q̇

together with the introduction of a function called the Hamiltonian

H(q, p) = p⊤q̇ − L(q, q̇)

and showed that in the new coordinate system (p, q), Lagragian equation has a much simpler form,
that is, the canonical/Hamiltonian equation.

Finally we tried to use CoV to solve the optimal control

minφ(x(T )) +

∫ T

0

L(x, u)dt

subject to
ẋ = f(x, u), x(0) = x0.

Remember that after introducing

H(x, u, p) = p⊤f(x, u)− L(x, u)
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we were at the step

δJ = −
∫ T

0

(ṗ⊤ +Hx)δx+Huδudt+ (φx + p(T )⊤)δx(T ) (1)

Then by requiring p to satisfy the ODE

ṗ = −H⊤
x (x∗, u∗)

with boundary condition
p(T ) = −φ⊤

x (x∗(T ))

the first variation becomes

δJ(u∗) = −
∫ T

0

Hu(x∗, u∗, p)δudt

now that δu is arbitrary, since we suppose we have no constraints, then

Hu(x∗(t), u∗(t), p(t)) = 0, ∀t ∈ [0, T ].

Let’s now derive the second order necessary condition. For that, we shall use (1):

δ2J = −
∫ T

0

δx⊤Hxxδx+ δu⊤Hxuδx+ (ṗ⊤ +Hx)δ
2x+ δx⊤Huxδu+ δu⊤Huuδu+Huδ

2udt

+ (φx + p(T )⊤)δ2x(T ) + δx(T )⊤φxx(x(T ))δx(T )

Note that there won’t be any terms involving δp or δṗ since δp is multiplied by a zero term – remember
that p is added through

p⊤(t)(δẋ− fxδx− fuδu) = 0.

We choose the variation such that δ2u = 0 (e.g., u = u∗ + ϵv), then at the optimal point,

δ2J = δx(T )⊤φxx(x(T ))δx(T ) +

∫ T

0

−δx⊤Hxxδx− δu⊤Hxuδx− δx⊤Huxδu− δu⊤Huuδudt

= δx(T )⊤φxx(x(T ))δx(T ) + (φx + p(T )⊤)δ2x(T )−
∫ T

0

[
δx
δu

]⊤ [
Hxx Hxu

Hux Huu

] [
δx
δu

]
dt

In order that δ2J ≥ 0, we must have (the Hessian of H(·, u)):

Huu(x∗(t), u∗(t), p∗(t)) ≤ 0, ∀t ∈ [0, T ].

because wild oscillation in δu may cause negligible oscillation in δx. Thus Huu dominates δ2J .
Putting together the first and second order conditions

Hu(x∗(t), u∗(t), p(t)) = 0, ∀t ∈ [0, T ].

Huu(x∗(t), u∗(t), p∗(t)) ≤ 0, ∀t ∈ [0, T ]

we may guess that
u∗(t) ∈ argmaxuH(x∗(t), p(t), u).

This formula is quite interesting, which says that although the input space (functional space) is infinite
dimensional, the optimal u∗(t) is can be obtained through a finite dimensional optimization problem!
Based on the previous deduction, we make the following conjecture.

Conjecture 1. Assume that for the system ẋ = f(x, u), f and L are C2 in both x and u, and that u
is unconstrained. Assume x(0) is fixed and x(T ) is free. Then there exists some p(·) and that on the
optimal solution, we have

ẋ∗ = H⊤
p (x∗, u∗)

ṗ = −Hx(x∗, u∗)

with boundary conditions
x∗(0) = x0, p(T ) = −φ⊤

x

and
u∗(t) ∈ argmaxuH(x∗(t), u), ∀t ∈ [0, T ].
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Remark 1. In this conjecture, we need twice continuous differentiability because while taking second
order variation, we have to compute the second order partial derivatives. This is restrictive and seems
unnecessary – in the formulas, we used only first order partial derivatives of f , L, φ w.r.t. x. So a good
question is, does this also hold for f , L, φ which are only piecewise C1 w.r.t. x? Another drawback
is that the conjecture requires u to be constraint free. In practice, this is not very useful because we
almost always have constraints on the input. e.g., |u| ≤ 1. Notice that for this kind of input, when
u is at the boundary, say u = 1, the variation near this u cannot be arbitrary – it can not exceeds 1.
Thus the above reasoning is no longer valid.

However, this conjecture is very close to the final form of the maximum principle which we now
introduce.

Theorem 1. Consider the system ẋ = f(x, u) with cost function

J(u) = φ(x(tf )) +

∫ tf

0

L(x, u)dt

and boundary constraint
x(tf ) ∈ M ⊆ Rn

Assume f , φ and L are C1 in x. Let (x∗(·), u∗(·)) correspond to the optimal solution to the minimiza-
tion problem

min
u∈Uad

J(u)

in which Uad = {u : [0, tf ] → U ⊆ Rm}. Define the Hamiltonian function H(x, u, p, p0) = p⊤f(x, u) +
p0L(x, u). Then there exists a function p∗ : [0, tf ] → Rn and a constant p∗0 ∈ {0,−1}, satisfying
(p∗0, p

∗(t)) ̸≡ (0, 0) such that
1) (x∗(·), p∗(·)) satisfies the canonical equation

ẋ = H⊤
p

ṗ = −H⊤
x

with initial condition x∗(0) = x0. The second equation is called the costate equation, and p is the
costate.

2) The transversality condition holds:

p∗(tf ) + φ⊤
x (x

∗(tf )) ⊥ Tx∗(tf )M.

3) The maximum principle holds:

H(x∗(t), u∗(t), p∗(t), p∗0) = max
u∈U⊆Rm

H(x∗(t), u, p∗(t), p∗0) = constant (2)

for all t ∈ [0, tf ]. In particular, this constant is zero if tf is free.

This theorem was conjectured by the Pontrayagen group in the late 1950s. But it took quite some
time before the theorem was finally rigorously proved. Before going on, let’s stop for a while and
appreciate a bit the theorem.

Discussions
• There’s no smoothness requirement of f and L on u – we only require C1 of f , φ, L on x. This is

a big improvement compared to our conjecture. And there’s no PDE (as we will see later, there
is another method for optimal control called dynamic programming, which requires PDE). This
means that the numerical computational load should be quite manageable.

• Compared to the conjecture, there is a new constant p0 in the Hamiltonian which is either 0 or
−1. When p0 = 0, we call the minimizer u∗ an abnormal extremal. Abnormal extremals are bad
because they are hard to compute. This is because in the Hamiltonian H, the information of
the Lagrangian is lost. As a result, the maximum principle tells you only limited information.
You might expect some criteria which can help you exclude the existence of abnormal extremals.
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Unfortunately, as far as I know, such criteria do not exist for general systems. The good news
is, in most control systems, abnormal extremals do not exist and checking the non-existence of
abnormal extremals are usually not difficult. A simple method for doing this is to first setting
p0 = 0 and then derive a contradiction by showing that p(t) ≡ 0.

• Transversality conditions of the costate equation. When the terminal state is free, M = Rn, then
the transversality condition is simply

p∗(tf ) = −φ⊤
x (x(tf )).

With this, we can solve the costate equation backward. When the terminal state is fixed, however,
M is a singleton, and the transversality condition does not tell us any information about the
terminal condition of p∗(tf ). Instead, one has to use other information to solve p. Typically, one
has to solve a boundary value problem resorting to the fact that the initial and terminal states
of the system are fixed. In general, boundary value problem is harder to solve than a Cauchy
problem. In practice, it’s common to relax the boundary hard constraint to a “soft constraint”.
For example, for a steering problem where the desired terminal state is a fixed point x1, we
consider a cost

J̃(u) := k|x(T )− x1|2 +
∫ T

0

L(x, u)dt.

By adjusting (e.g., increasing) the parameter k, you argue that the terminal state x(T ) can be
made close to the desired terminal state.

• The maximum principle is a finite dimensional optimization problem. As we said, this is quite
remarkable since this turns an infinite minimization problem to a finite dimensional one. For
low dimensional problems, sometimes you can compute explicitly from the maximum principle
the optimal control u∗(t) as a function of x∗(t) and p∗(t). Then you substitute u∗(x∗, p∗) back
to the canonical equation and solve x∗ and p∗ and at the same time you also get u∗. It is worth
mentioning that the maximum principle is a maximization while the optimal control problem is
a minimization. This is nothing mysterious as I said, you can swap the sign of H and then you
get a minimization principle. Another thing to mention is that the maximum principle says that
the Hamiltonian is constant along the optimal trajectory. But you should be careful that this
constant is not the optimal cost of the system. For general nonlinear systems, normally, in order
to get the optimal cost, you have to substitute the optimal solution to the cost and integrate. For
unconstrained linear systems (very limited case!), the optimal cost is easy to find. It’s also worth
mentioning that when the terminal time tf is free, this constant is 0 which is a quite interesting
result.

Examples
Before we prove this theorem, let’s see how should we use the maximum principle. In maximum
principle, the first step is to

1) Determine the type of the optimal control problem. e.g., is the terminal state fixed? is the ter-
minal time free? And also we need to verify that the assumptions of the MP are met, e.g., smoothness.

2) Write the Hamiltonian, the costate equation, and the transversality condition – if there’s any.
3) Next, solve the maximization and differential equations, which can be done either concurrently

or separately, numerically or analytically.
We illustrate this first by a toy example.

Example 1. Consider

ẋ1 = −x1 + u

ẋ2 = x1

with initial condition x = (1, 0) and cost
J = x2(1).

The constraint on u is |u| ≤ 1.
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To solve this, first we define the Hamiltonian H(x, u, p, p0) = p1(−x1 + u) + p2x1, which does not
depend on p0. Then we write the costate equation

ṗ1 = −Hx1 = p1 − p2

ṗ2 = −Hx2 = 0

with [
p1(1)
p2(1)

]
+

[
0
1

]
⊥ R2

thus
p1(1) = 0, p2(1) = −1.

By maximum principle, the optimal law should be taken as

u∗(t) = signp1(t).

But we are not done yet, we have to compute p1(t). From the costate equation and transversality
condition, we get immediately

p2(t) ≡ −1

and

p1(t) = etp1(0) +

∫ t

0

et−τdτ = etp1(0) + et − 1

Using the boundary condition, we get

ep1(0) + e− 1 = 0 ⇒ p1(0) =
1− e

e

which results in
p1(t) = et−1 − 1.

The optimal controller is drawn as in Figure

Figure 1: Optimal controller has a switching

The next problem is somehow less artificial.

Minimum fuel control

Suppose that we are to land a lunar rover to the moon. The dynamics of this model is described by

ÿ = −g + u

where y is the height of the lander, g ≥ 0 the gravitational acceleration, and u the trust, which can
be up or down and is bounded |u| ≤ 1, and 0 < g < 1. Note that here we assume the mass of the
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Figure 2: Lunar lander

lander is 1 (fuel loss is neglected). The initial height of the lander is y(0) = h > 0 and initial velocity
ẏ(0) = v < 0. In order that the problem is feasible, assume h is large, otherwise the lander can never
land with zero velocity.

The objective is to find an optimal control law which minimizes the fuel consumption

J =

∫ tf

0

|u|dt

with tf free, and which drives the system to the final state y(tf ) = ẏ(tf ) = 0.
Rewrite the system model as

ẋ1 = x2

ẋ2 = −g + u

with initial and terminal conditions (x1(0), x2(0) = (h, v), (x1(tf ), x2(tf )) = (0, 0). The Hamiltonian
is H(x, u, p, p0) = p1x2 + p2(−g + u) + p0|u|, and the costate equation

ṗ1 = 0

ṗ2 = −p1

Then p1(t) = c1 and p2(t) = −c1t+ c2 for some constants c1 and c2. Since the terminal state is fixed,
for the moment we don’t know the terminal condition of the costate equation.

Since p0 appears in the Hamiltonian in a nontrivial manner, we need to exclude abnormal extremals
first. If p0 = 0, then

u∗(t) = sign(p2(t))

and using the maximum principle, since tf is free, we have for all t,

H(x∗(t), u∗(t), p∗(t), p∗0) = c1x
∗
2(t) + (−c1t+ c2)(−g + u∗(t)) = 0. (3)

In particular, at t = tf ,
(−c1tf + c2)(−g + 1) = 0

or −c1tf + c2 = 0. Thus there is no switching and u∗ ≡ 1 (at the final stage, u∗(tf ) must be non-
negative). This only happens when the height and velocity satisfies

1− g =
v2

2h
.

In this situation, u∗ ≡ 1 is the only controller possible, which is of course optimal. So there is an
abnormal extremal.

Now let p0 = −1. In this case, if we maximize maxu H(x, u, p) = p1x2 + p2(−g + u)− |u|, we will
get

u∗(t) =


−1, p2 < −1

0, −1 ≤ p2 < 1

1, p2 ≥ 1
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As before, u must be positive near tf , i.e., it must be in the phase p2 = −c1t + c2 ≥ 1, for all t near
tf . For this to be true, if c1 ≥ 0, then p2(t) ≥ 1 for all t and there is no switching and u∗ = 1. As we
mentioned before, this happens only when 1 − g = v2

2h . Let c1 < 0. There might be two switchings,
when p2(t) crosses −1 or 1. Since when c2 ≥ 1 there’s no switching, consider c2 ≤ 1. In this case,
there is at least one switching when

−c1t2 + c2 = 1

or t2 = c2−1
c1

. In order to have two switchings, there should exist some t1 satisfying −c1t1 + c2 = −1,
or t1 = 1+c2

c1
, which requires c2 < −1 and u∗ should be taken as

u∗(t) =


−1, 0 ≤ t ≤ t1

0, t1 < t ≤ t2

1, t2 < t ≤ tf

.

Using x2(tf ) = 0, we can obtain the equality

v + (−g − 1)t1 − g(t2 − t1) + (1− g)(tf − t2) = 0,

From this and H(x∗(t), u∗(t), p∗(t)) ≡ 0, we can solve for c2 = c1v−1
1+g > −1 since v < 0 as assumed, a

contradiction. Thus −1 ≤ c2 < 1, and there is only one switching at t2. The corresponding optimal
control is

u∗(t) =

{
0, 0 < t ≤ t2

1, t2 < t ≤ tf
.

To find t2, use the terminal condition x1(tf ) = x2(tf ) = 0:

v − gt2 + (1− g)(tf − t2) = 0

vt2 −
1

2
gt22 +

1

2
(1− g)(tf − t2)

2 = h

from which we find solve for t2, tf and then c1, c2. To conclude, the lander should first follow a free
fall until v and h satisfies 1− g = v2

2h , and then use its full power to propel the lander. See Figure 3.

free fall

height

velocity <0

Figure 3: Moon lander
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