
1 Lecture 1: Introduction (Karl Johan)

2 Lecture 2: Calculus of variation (CoV) and the Maximum
principle

In this lecture, we are going to learn the maximum principle. The MP is a type of CoV, so we will
first study the classical theory of CoV. Then we will try to move from the classical CoV theory to
the optimal control setting, there we will immediately encounter some essential difficulties that the
classical CoV cannot overcome. So we will need some new insights. These new insights, discovered by
the Pontrayagen school finally led to the celebrated maximum principle. Without further ado, let’s
first take a look at the classical theory of CoV, which of course is interesting in its own right.

2.1 CoV
Behind all physical phenomena in our universe, there is almost always a principle of calculus of varia-
tion, e.g., in mechanics, thermal dynamics, electrodynamics and quantum physics, you name it. As a
French mathematician once said, nature is thrifty/optimal in all its actions. In physics, they call such
the principle of least action. For us, perhaps the best example for illustration is mechanics.

Example 1 (Mechanics). In mechanics, a system is described by its configuration and velocity (q, q̇) –
sometimes called generalized coordinates and velocities. The most fundamental question in mechanics
is to find the equation of motion of a system. It turns out there is a quite simple principle, which
states that the path of a mechanical system between two fixed points q0, q1 without external force is
the one which minimizes the following functional

S(q(·), q̇(·)) :=
∫

L(q(t), q̇(t))dt

Here L is something called the Lagrangian of the system, which is the difference between the kinetic
energy and potential energy of the system:

L(q, q̇) =
1

2
q̇⊤M(q)q̇ − V (q)

If you solve this minimization problem, then you’ll get the Euler-Lagragian equations of motion.

Example 2 (Optics). In high school physics, we learned that the velocities of lights in different
mediums are different. An interesting question is that what is the trajectory of a ray when it crosses
intersection of two different mediums, see Figure 1. Fermat says that the path taken by a ray between
two given points is the path that can be traveled in the least time. This again is a statement of CoV,
which can help us establish the celebrated Snell’s law:

sin θ1
sin θ2

=
n2

n1
.

Besides physics, there are also many other important types of CoV problems. For example, Dido’s
problem.

Example 3 (Dido’s problem). Suppose you have a curve with fixed length that you want to enclose it
with a line with maximum area, see Figure 2. The question is what’s the optimal shape of the curve.
From calculus, we know that the area is

A(γ) :=
1

2

∫ 1

0

γ1(s)γ
′
2(s)− γ′

1(s)γ2(s)ds

and the length of the curve is ∫
|γ′(s)|ds = constant

which is an integral constraint. Due to the integral constraint, this problem is not as easy to solve if
we don’t resort to optimal control theory.
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Figure 1: Snell’s law

𝑐𝑐

𝑥𝑥

𝑦𝑦

Figure 2: Dido’s problem

The final example I’m giving you is from geometry.

Example 4 (Riemannian geometry). On a sphere, we know that the shortest path between two points
is contained in a so called great circle. This kind of path is called a geodesic in Riemannian geometry.
A basic question in Riemannian geometry is how to find the geodesic between two points. That is,
find s 7→ q(s) such that

ℓ =

∫ 1

0

|q̇(s)|ds

is minimized with fixed endpoints with the constraint q(0) = q0, q(1) = q1.

Let’s do a little summary. Notice that in all the previous examples, the cost functionals to be
minimized have the form (with or without constraint):

min
q(·),q̇(·)

S :=

∫ T

0

L(q, q̇)dt.

Thus it seems a good candidate to work with. From now on, we will focus on the case that the only
constraint is that the two endpoints are fixed.

The idea of CoV is quite simple. Consider the a generic minimization problem

min
u∈U

J(u)

where U can be arbitrarily complicated subsets of a vector space V (finite or infinite dimensional).
Suppose u∗ is a minimizer of the above problem, then we do an infinitesimal perturbation of u∗. More
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precisely, we construct an one-parameter set of uϵ, continuous in ϵ, such that u0 = u∗ and uϵ ∈ U for
all sufficiently small ϵ. In particular, if U is a vector space, then uϵ can be chosen as uϵ = u∗ + ϵv
for some v ∈ U . Conceptually, the more admissible perturbations you can find, the more info you can
extract on the optimal solution. This is a quite natural idea. For example, if you want to acquire
some knowledge of a linear system, then you would like to inject a signal with rich frequencies and
then check its output. And we know that white noise contains all frequency components, so it’s a good
candidate.

Now by optimality, we must have
J(uϵ) ≥ J(u∗)

for all sufficiently small ϵ. But this immediately implies that

ϵ 7→ J(uϵ)

has a minimum at ϵ = 0. Thus if this function ϵ 7→ J(uϵ) is differentiable, we must have

∂J

∂ϵ
|ϵ=0 = 0,

∂2J

∂ϵ2
|ϵ=0 ≥ 0. (1)

As a simple example, consider the minimization problem

min f(x)

subject to h(x) = 0, x ∈ Rn

where f and h are C1. This problem can be solved using Lagrangian multiplier, but it can also be
solved by CoV. Assume x∗ is a minimizer. Choose any curve ϵ 7→ xϵ such that h(xϵ) = 0 and x0 = x∗.
Then ϵ 7→ f(xϵ) achieves minimum at ϵ = 0 for ϵ sufficiently small. This implies that

0 =
∂f(xϵ)

∂ϵ
|ϵ=0 = ∇f(x∗) ·

∂xϵ

∂ϵ
|ϵ=0

in which ∂xϵ

∂ϵ |ϵ=0 is nothing but the velocity of the curve ϵ 7→ xϵ at x∗. We call such vectors tangent
vectors of the set

M := {x : h(x) = 0}

at the point x∗ and denoted it by Tx∗M . See Figure 3

Figure 3: Tangent vectors.

The above formula says, for all tangent vectors v at the minimizer x∗, it must be perpendicular to
∇f(x∗). For second order variation.

∂xϵ

∂ϵ

⊤
fxx

∂xϵ

∂ϵ
|ϵ=0 + fx

∂2xϵ

∂ϵ2
|ϵ=0 ≥ 0

Choose xϵ = x∗ + ϵv for v fixed locally, then ∂2xϵ

∂ϵ2 |ϵ=0 = 0. Thus fxx(x∗) ≥ 0.
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The above calculation is a bit inefficient, for each time, you have to choose a curve xϵ which you
haven’t even used. We shall invent some more efficient notations to facilitate our computation. The
δ operator does the job. For quantity F , we denote δF as the infinitesimal variation of F . Well, this
is not a valid mathematical definition. But this can be made rigorous by interpreting it as a Gateaux
derivative. However, we won’t need the rigorous construction. The only things that we should know
are the following:

P1) δ is a differential operator: it satisfies the chain rule, composition rule, etc.

P2) in our setting, δ commutes with the integration and differentiation operators, i.e., δ
∫
=

∫
δ and

δẋ = d
dtδx.

P3) If a function u 7→ J(u) has a minimum at u∗, then the first variation vanishes δJ(u∗) = 0 and
the second variation is non-negative δ2J(u∗) ≥ 0.

Now let’s go back to the Lagrangian problem and we will immediately be able to solve a number of
interesting problems. Let’s minimize

S =

∫
L(q, q̇)dt.

Then by item P3), at the minimizer (omit the argument for ease of notation) we have

δS = 0.

Now using item P1 and P2, we get

0 = δS = δ

∫
Ldt =

∫
δLdt =

∫
∂L

∂q
δq +

∂L

∂q̇
δq̇dt

i.e. the infinitesimal change of J is a result of infinitesimal changes of q and q̇.

q
0

qT

Figure 4: Variation

Using integration by parts, we get

0 =

∫
∂L

∂q
δq +

∂L

∂q̇
δq̇dt =

∫
∂L

∂q
δq − d

dt

∂L

∂q̇
δqdt+

∂L

∂q̇
δq|T0

=

∫ (
∂L

∂q
− d

dt

∂L

∂q̇

)
δqdt+

∂L

∂q̇
δq|T0

Now the boundary term vanishes if we carefully choose the variation to be such that the endpoints are
fixed. Now we claim that

∂L

∂q
− d

dt

∂L

∂q̇
= 0,

This equation is called the Euler-Lagrange equation. To arrive at this, we need the Fundamental
lemma of CoV.

Lemma 1. If a continuous function f on on open interval (a, b) satisfies∫ b

a

f(x)h(x)dx = 0

for all h ∈ C∞
c (a, b), then f is identically zero. If f is only locally integrable (in the Lebesgue sense),

then f is zero almost everywhere.
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Now using this lemma, we can choose δq which is compactly supported to arrive at the EL-equation
(remember that L is C1).

Let’s use the EL equation to solve an example – finding the geodesic on a sphere. A point on a two
sphere can be described by two angles (θ, ϕ), see Figure 5. Let q = (θ, ϕ). Then a curve has the form
t 7→ (θ(t), ϕ(t)). Consider two points on the sphere on the xy plane. In this case, ϕ(0) = ϕ(1) = π

2 .
The length of the curve is calculated as∫ 1

0

√
R2θ̇2 +R2 sin2 θϕ̇2dt

with θ(0) = θ0 and θ(1) = θ1. Instead of working with this, we claim that it’s equivalent to work with
(only valid for Riemannian geodesic!): ∫ 1

0

R2θ̇2 +R2 sin2 θϕ̇2dt

That is, the new Lagrangian is

L(q, q̇) = R2θ̇2 +R2 sin2 θϕ̇2

Now lets apply the EL formula. First we find

∂L

∂q
=

[
2R2 sin θ cos θϕ̇2

0

]
,

∂L

∂q̇
=

[
2R2θ̇

2R2 sin2 θϕ̇

]
The EL equation says

∂L

∂θ
− d

dt

∂L

∂θ̇
= 0

∂L

∂ϕ
− d

dt

∂L

∂ϕ̇
= 0

or

sin θ cos θϕ̇2 = θ̈

2 sin θ cos θθ̇ϕ̇+ sin2 θϕ̈ = 0

It’s easily seen that ϕ ≡ π
2 is a solution, and with a bit more technique, you can show that this is the

only solution. On the other hand, we have θ̈ = 0, hence θ(t) = (1 − t)θ0 + tθ1 which is an increasing
function. So the geodesic lies on a great circle and there is no winding. But notice carefully that the
geodesic is not necessarily minimizing! To guarantee the geodesic is minimizing, we would need some
second order condition.

Remark 1. The EL equation can be easily extended to higher dimensions in the sense that we consider
action of the form

S =

∫
L(q,∇q, x)dx

where x ∈ Rn. This is left as an exercise.

Second order variation
Recall the first variation

δS =

∫
∂L

∂q
δq +

∂L

∂q̇
δq̇dt.

We compute another variation:

δ2S =

∫
δq⊤Lqqδq + δq̇⊤Lqq̇δq + Lqδ

2q + δq⊤Lq̇qδq̇ + δq̇⊤Lq̇q̇δq̇ + Lq̇δ
2q̇dt
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remember that δ commutes with d
dt , we have∫
Lq̇δ

2q̇dt = Lq̇δ
2q|T0 −

∫
(
d

dt
Lq̇)δ

2qdt.

Plugging this into the δ2S and remember the EL equation d
dtLq̇ = Lq, we get (note δ2q = 0 at the

boundary):

δ2S =

∫ [
δq
δq̇

]⊤ [
Lqq Lqq̇

Lq̇q Lq̇q̇

] [
δq
δq̇

]
dt ≥ 0.

We assert that Lq̇q̇(q, q̇) must be semi-positive definite, i.e.,

Lq̇q̇ ≥ 0 (2)

along the optimal solution (q, q̇). To see this, it is sufficient to note that there exist functions with
small magnitude but with rather large derivatives; the converse is false, thus it may happen that
DqqL − d

dtDqq̇L is non semi-positive definite (it is not even symmetric!). It is interesting to ask
whether Lq̇q̇ > 0 is sufficient as in finite dimensional optimization.

When the optimal solution exists and is continuously differentiable, it necessarily satisfies the
Euler-Lagrangian equation. On the other hand, the solutions to the Euler-Lagrangian equation may
be minimizing, maximizing or neither. One good example to illustrate this is the geodesic problem on
a sphere S2 ⊆ Rn. For any two points x ̸= −y on the sphere, there exist exactly two geodesics joining
them, both satisfying the Euler-Lagrangian equation, but only one of them is minimizing – the one
that does not contain two antipodal points. When the two points are exactly antipodal, then there are
infinitely many geodesics joining them and all of them have the same length. In conclusion, a geodesic
on the sphere is strictly minimizing if and only if the geodesic does not contain two antipodal points.
It turns out that this is a general phenomenon and antipodal points on the sphere are a special case
of a more general notion: conjugate points.

Proposition 1. If [a, b] ∋ t 7→ (q(t), q̇(t)) is a C1 solution to the Euler-Lagrangian equation and
Dq̇q̇L > 0 along the solution, then q(·) is a strict minimum of the action restricted to [a, b] if [a, b]
contains no conjugate points of a.

We are not going to give the precise definition of conjugate points nor are we going to prove the
above result. After all, analyzing conjugate points is a delicate issue and is out of the scope of this
course. It is enough to remember the sphere example to be aware of such phenomenon, see Figure 5.

S

N

Figure 5: N and S are conjugate points.

Caveat: the EL equation does not incorporate any constraints (except on the boundary)! In
this sense equation (1) is much more general and flexible. The main advantage of formula (1) is
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that sometimes by carefully choosing the perturbation satisfying the constraints, a lot of interesting
information about the minimizer can be obtained which helps us determine the minimizer. But still,
it relies on the choices of the perturbation. We do not plan to spend more time here since we will later
introduce a more powerful tool that is, the maximum principle, which will ultimately help us deal with
constraints in a more effective manner.

2.2 Canonical transform
Next we are going to introduce a key trick which has profound impacts on natural science and engineer-
ing. It’s among the most important equations in physics and engineering. It’s definitely worthwhile to
put it into your knowledge box. This trick is as follows.

Consider a coordinate transform p = ∂L
∂q̇ , i.e.,

(q, q̇) 7→ (q, p)

called canonical transform and define a function called the Hamiltonian

H(q, p) = p⊤q̇ − L(q, q̇)

in which q̇ is understood as a function of q and p. For example,

∂H

∂p
= p⊤

∂q̇

∂p
+ q̇ − ∂L

∂q̇

∂q̇

∂p
= q̇ (3)

by definition of p. The Jocobian of the transform is[
I 0
∗ Lq̇q̇

]
thus if Lq̇q̇ is non-singular the transform is well-defined.

Then S can be rewritten as

S =

∫ T

0

Ldt =

∫ T

0

p⊤q̇ −H(q, p)dt

Let us try to calculate the first variation of S under this form:

δS =

∫ T

0

p⊤δq̇ + q̇⊤δp−Hqδq −Hpδpdt

= p⊤δq|T0 −
∫ T

0

ṗ⊤δq − q̇⊤δp+Hqδq +Hpδpdt

= p⊤δq|T0 +

∫ T

0

(q̇⊤ −Hp)δp− (ṗ⊤ +Hq)δqdt.

Remember that at the optimal point, the EL equation is satisfied, i.e., which results in (invoking (3)):

0 = δS = −
∫ T

0

(ṗ⊤ +Hq)δqdt

when the endpoints are fixed. By the same reasoning as before, we immediately get

ṗ = −H⊤
q (q, p)

This equation, together with (3), i.e.,
q̇ = H⊤

p (q, p)

is called the Hamiltonian equation or the canonical equation, which is extremely important in science
and engineering. This equation will also appear in the maximum principle. Now we show that the
Hamiltonian equation is indeed equivalent to EL-equation. Differentiating H w.r.t. q and p, we get

∂H

∂q
=

∂q̇

∂q
p− ∂L

∂q
− ∂q̇

∂q

∂L

∂q̇
= −∂L

∂q
= − d

dt

∂L

∂q̇
= −ṗ
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and
∂H

∂p
= q̇ +

∂q̇

∂p
p− ∂q̇

∂p

∂L

∂q̇
= q̇

as expected.
It still remains to find the second order variation of S:

δ2S = δp⊤δq|T0 + p⊤δ2q|T0 +

∫ T

0

(δq̇⊤ − δq⊤Hp − δp⊤Hpp)δp+ (q̇⊤ −Hp)δ
2p

− (δṗ⊤ + δq⊤Hqq + δp⊤Hqp)δq − (ṗ⊤ +Hq)δ
2qdt

Invoking the first order necessary condition and remember that the boundary variation is zero, δ2S
can be simplified to

δ2S =

∫ T

0

(δq̇⊤ − δq⊤Hpq − δp⊤Hpp)δp− (δṗ⊤ + δq⊤Hqq + δp⊤Hqp)δqdt

=

∫ T

0

δq̇⊤δp+ δṗ⊤δq −
[
δq
δp

]⊤ [
Hqq Hqp

Hpq Hpp

] [
δq
δp

]
dt

= −
∫ T

0

[
δq
δp

]⊤ [
Hqq Hqp

Hpq Hpp

] [
δq
δp

]
dt.

In order that δ2S ≥ 0 at the optimizer, it seems that we necessary have[
Hqq Hqp

Hpq Hpp

]
≤ 0

since q and p seem to be independent variables and we can vary them independently. But this is false!

� Although in the Hamiltonian H(q, p), q and p can be seen as independent variables, as long as q(t)
and p(t) are defined to be the solution to the canonical equation, they are indeed coupled.

What’s worse, it’s not obvious how to reason as in the Lagragian case to get a second order necessary
condition: the role of variables p and q are somehow symmetric, unlike the relation between q and q̇.
We’ll circumvent this issue later while we derive the maximum principle.

The canonical transform is nice, but it is somehow criptic. To get a better understanding of it,
let’s check the example of mechanics. Remember that the Lagrangian in mechanics is

L =
1

2
q̇⊤M(q)q̇ − V (q)

The canonical transform is
p =

∂L

∂q̇
= M(q)q̇.

This transform is well-defined since ∂2L
∂q∂q̇ = M(q) > 0. Now substitute this into

H(q, p) = p⊤q̇ − L(q, q̇) = q̇⊤M(q)q̇ − (
1

2
q̇⊤M(q)q̇ − V (q))

=
1

2
q̇⊤M(q)q̇ + V (q)

which is nothing but the mechanical energy of the system! Thus the Hamiltonian corresponds to the
energy of the system. Recalling the Hamiltonian equation, we have

dH

dt
=

∂H

∂q
q̇ +

∂H

∂p
ṗ = 0.

Thus the mechanical energy of a closed mechanical system without external force is preserved.
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Another interpretation
The canonical transform p = ∂L

∂q̇ stills needs to be clarified. It has an interesting interpretation by the
so called Legendre transform. Given a function f : Rn → R, the Legendre transform of f is a mapping
f 7→ f∗ defined by

f∗(x∗) = sup
x
{x⊤x∗ − f(x)}.

Replace f(x) by L(q, q̇) by viewing q̇ as the independent variable while keeping q constant, we get

L∗(q, p) = sup
q̇
{p⊤q̇ − L(q, q̇)}.

The supremum in the above formula is achieved at the point such that p = ∂L
∂q̇ , which is the canonical

transform. Thus we see H = L∗. Recall that the Legendre transform is involutive when f is convex.
It follows that L = H∗ if L is convex in q̇, which is true for mechanical systems.

2.3 Optimal control via CoV
Now we are ready to study optimal control problems using CoV and let’s see how far we can get. We
focus on the nonlinear system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm

with fixed initial condition x0 and cost function

J = φ(x(T )) +

∫ T

0

L(x(t), u(t))dt.

For the moment we impose no constraints on the input u. Let’s do the first variation along the optimal
solution (x∗, u∗):

δJ = ∇φ(x(T )) · δx(T ) +
∫ T

0

Lx · δx(t) + Lu · δu(t)dt

Recall that the essential step in “key trick” is using integration by parts formula. But in the above we
don’t have a term involving δẋ, instead, it’s replaced by δu. However, we know

δẋ = fxδx+ fuδu

or
δẋ− fxδx− fuδu = 0

thus, we may add this term into the above formula. However, this is a vector, so we multiply it by an
arbitrary vector p(t) from the left

p(t)⊤ (δẋ− fxδx− fuδu) = 0

and incorporate it in δJ :

δJ = φxδx(T ) +

∫ T

0

Lxδx+ Luδu+
(
p⊤ (δẋ− fxδx− fuδu)

)
dt

= φxδx(T ) +

∫ T

0

(
Lx − p⊤fx

)
δx+

(
Lu − p⊤fu

)
δu+ p⊤δẋdt

= φxδx(T ) +

∫ T

0

∂(L− p⊤f)

∂x
δx+

∂(L− p⊤f)

∂u
δu+ p⊤δẋdt

= φxδx(T ) +

∫ T

0

−Hxδx−Huδu+ p⊤δẋdt

for H(x, p, u) = p⊤f(x, u)− L(x, u). Now we are in a position to use integration by parts formula

δJ = φxδx(T ) +

∫ T

0

(
−Hxδx−Huδu− ṗ⊤δx

)
dt+ p(t)⊤δx(t)|T0 (4)
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Since the initial state is fixed, we have δx(0) = 0 and we arrive at

δJ = −
∫ T

0

(ṗ⊤ +Hx)δx+Huδudt+ (φx + p(T )⊤)δx(T ) (5)

Choose p such that

ṗ = −H⊤
x (x∗, u∗)

and
(φx + p(T )⊤)δx(T ) = 0

then

δJ = −
∫ T

0

Huδudt = 0

from which it follows that
Hu(x∗, u∗) = 0.

On the other hand,
ẋ∗ = H⊤

p (x∗, u∗)

thus we again obtain a canonical equation

ẋ∗ = H⊤
p (x∗, u∗)

ṗ = −H⊤
x (x∗, u∗)

If x(T ) ∈ M for some manifold, then

p(T ) + φ⊤
x (x(T )) ⊥ Tx∗(T )M.

For example, if M is the total space, i.e., free boundary, then p(T ) = −φ⊤
x (x(T )). If the boundary is

fixed, then p(T ) is undetermined.
If Huu(x, u) is nonsigular, then by implicit function theorem, we can solve u∗ = u∗(x) from

Hu(x, u) = 0 at least locally. With this, the Hamiltonian equation can be solved numerically.
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