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Optimal Control 2018

L1: Functional minimization, Calculus of variations (CV) problem

L2: Constrained CV problems, From CV to optimal control

L3: Maximum principle, Existence of optimal control

L4: Maximum principle (proof)

L5: Dynamic programming, Hamilton-Jacobi-Bellman equation

L6: Linear quadratic regulator

L7: Numerical methods for optimal control problems

Exercise sessions (20%):
Solve 50% of problems in advance. Hand-in later.
Mini-project (20%):
Study and present your own optimal control problem.
Written take-home exam (60%).



Summary of L3: Basic problem formulation

Find a control u ∈ U ⊂ Rm that minimizes the cost

J(u) =
∫ tf

t0
L(x(t), u(t))︸ ︷︷ ︸
time independent

dt+K(xf )

where

• ẋ = f(x(t), u(t))︸ ︷︷ ︸
time independent

, x(t0) = x0, x ∈ Rn,K(xf ) = 0, (tf , xf ) ∈ S

• f, fx, L, Lx continuous

• Basic fixed-endpoint problem (BFEP) (tf free, xf fixed)

S = [t0,∞)× {x1}
• Basic variable-endpoint problem (BVEP) (tf free, xf ∈ S1)

S = [t0,∞)× S1

S1 = {x ∈ Rn : h1(x) = h2(x) = · · ·hn−k(x) = 0}
hi ∈ C1(Rn → R), i = 1, . . . , n− k.



Summary of L3: Maximum principle

Define the Hamiltonian

H(x, u, p, p0) = 〈p, f(x, u)〉+ p0L(x, u).

Assume that the basic problem has a solution (u∗(t), x∗(t)). Then
there exist a function p∗ : [t0, tf ]→ Rn and a constant p∗0 ≤ 0
satisfying (p∗0, p∗(t)) 6= (0, 0) ∀t ∈ [t0, tf ] and

1) ẋ∗ = Hp(t, x∗, u∗, p∗), ṗ∗ = −Hx(t, x∗, u∗, p∗).

2) H(x∗(t), u∗(t), p∗(t), p∗0) ≥ H(x∗(t), u(t), p∗(t), p∗0)
∀t ∈ [t0, tf ], ∀u ∈ U.

3) H(x∗(t), u∗(t), p∗(t), p∗0) = 0 ∀t ∈ [t0, tf ]

4) 〈p∗(tf ), d〉 = 0 ∀d ∈ Tx∗(tf )S1 (Only for BVEP)

Tx∗(tf )S1 : tangent space to S1. Transversality condition.



Summary of L3: Transversality condition

〈p∗(tf ), d〉 = 0 ∀d ∈ Tx∗(tf )S1. (1)

Tx∗(tf )S1 = {d ∈ Rn : 〈∇hi(x∗(tf )), d〉 = 0, i = 1, . . . n− k}

• (1) means p∗(tf ) is a linear combination of ∇hi(x∗(tf )).

• S1 = {x1} =⇒ (1) is true for all p∗(tf ).

• S1 = Rn (i.e., k = n) =⇒ p∗(tf ) = 0.
• In general, k degrees of freedom for x∗(tf ) and n− k degrees of

freedom for p∗(tf ).



Outline

• Proof of Maximum Principle consists of several steps:
S1: From Lagrange form to Mayer form
S2: Temporal control perturbation
S3: Spatial control perturbation
S4: Variational equation
S5: Terminal cone
S6: Key topological lemma
S7: Separating hyperplane
S8: Adjoint equation
S9: Hamiltonian properties

S10: Transversality condition



1st Step of the Proof

S1: From Lagrange to Mayer form

An auxiliary state variable

x0(t) =
∫ t

t0
L(x(τ), u(τ))dτ, x0(t0)

results in the augmented system

ẋ0 = L(x, u), x0(t0) = 0

ẋ = f(x, u), x(t0) = x0

with the cost

J(u) =
∫ tf

t0
L(x(t), u(t))dt = x0(tf )



1st Step of the Proof (continued)

System representation

ẏ =
(
L(x, u)
f(x, u)

)
=: g(x, u)

in terms of

y =
(
x0

x

)
∈ Rn+1

results in the Mayer problem

J(u) = x0(tf )→ min
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An optimal trajectory x∗(·) of the original system in Rn corresponds in
an obvious way to an optimal trajectory y∗(·) of the augmented system in
Rn+1. The first component x0,∗ of y∗ describes the evolution of the cost
in the original problem, and x∗ is recovered from y∗ by projection onto Rn

parallel to the x0-axis. This situation is depicted in Figure 4.1 (note that L
is not necessarily positive, so x0 need not actually be increasing along y∗).
In this and all subsequent figures, the x0-axis will be vertical.
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Figure 4.1: The optimal trajectory of the augmented system

From now on, we let t∗ denote the terminal time of the optimal trajec-
tory x∗ (or, what is the same, of y∗). The next exercise offers a geometric
interpretation of optimality; it will not be directly used in the current proof,
but we will see a related idea in Section 4.2.6.

Exercise 4.3 Let t1 and t2 be arbitrary time instants satisfying t0 ≤ t1 <

t2 ≤ t∗. Let S′′ be the line passing through
(

0
x∗(t2)

)
and parallel to the x0-

axis. Show that no trajectory y starting at y∗(t1) =
(x0,∗(t1)
x∗(t1)

)
can meet S′′

below2 the point y∗(t2) =
(x0,∗(t2)
x∗(t2)

)
at any time t3, even not equal to t2. �

In the particular case when t2 = t∗, the claim in the exercise should be
obvious: no other trajectory starting from some point y∗(t1) on the optimal
trajectory can hit the line S ′ at a point lower than y∗(t∗). In other words, a
final portion of the optimal trajectory must itself be optimal with respect to
its starting point as the initial condition. This idea, known as the principle
of optimality, is illustrated in Figure 4.2. (The reader will notice that we
are using different axes in different figures.)

2I.e., at a point with a smaller x0-coordinate.

THE MAXIMUM PRINCIPLE
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Figure 4.2: Principle of optimality

Another simple observation, which will be useful later, is that the Hamil-
tonian (4.2) can be equivalently represented as the following inner product
in Rn+1:

H(x, u, p, p0) =

〈(
p0

p

)
,

(
L(x, u)
f(x, u)

)〉
. (4.8)

4.2.2 Temporal control perturbation

Let us see what happens if we introduce a small change in the terminal
time t∗ of the optimal trajectory, i.e., let the optimal control act on a little
longer or a little shorter time interval. We formalize this as follows: for an
arbitrary τ ∈ R and a small ε > 0, we consider the perturbed control

uτ (t) := u∗(min{t, t∗}), t ∈ [t0, t
∗ + ετ ]

which is illustrated by the thick curves in Figure 4.3 (for the two cases
depending on the sign of τ).

PSfrag replacements

tt

uτ (t)uτ (t)

t∗t∗ t∗ + ετt∗ + ετ

u∗u∗

Figure 4.3: A temporal perturbation

We are interested in the value of the resulting perturbed trajectory y at
the new terminal time t∗ + ετ . For τ > 0, the first-order Taylor expansion



2nd Step of the Proof

S2: Temporal control perturbation

Control variation at the terminal time instant

uτ (t) := u∗(min{t, t∗}), t ∈ [t0, t+ ετ ]

with an arbitrary τ ∈ R and a small ε > 0, and a new terminal time
t∗ + ετ .

THE MAXIMUM PRINCIPLE
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Another simple observation, which will be useful later, is that the Hamil-
tonian (4.2) can be equivalently represented as the following inner product
in Rn+1:

H(x, u, p, p0) =

〈(
p0

p

)
,

(
L(x, u)
f(x, u)

)〉
. (4.8)

4.2.2 Temporal control perturbation

Let us see what happens if we introduce a small change in the terminal
time t∗ of the optimal trajectory, i.e., let the optimal control act on a little
longer or a little shorter time interval. We formalize this as follows: for an
arbitrary τ ∈ R and a small ε > 0, we consider the perturbed control

uτ (t) := u∗(min{t, t∗}), t ∈ [t0, t
∗ + ετ ]

which is illustrated by the thick curves in Figure 4.3 (for the two cases
depending on the sign of τ).
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Figure 4.3: A temporal perturbation

We are interested in the value of the resulting perturbed trajectory y at
the new terminal time t∗ + ετ . For τ > 0, the first-order Taylor expansion



2nd Step of the Proof (continued)

Taylor expansion around t = t∗

y(t∗ + ετ) = y∗(t∗) + ẏ(t∗)ετ + o(τ) = y∗(t∗) +
g(y∗(t∗), u∗(t∗))ετ + o(τ) = y∗(t∗) + εδ(τ) + o(τ)

determines the trajectory variation εδ(τ) at the terminal point.

Varying τ ∈ R under fixed ε forms a direction ρ̄ at y∗(t∗) of
y∗(t∗) + εδ(τ).

110
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of y around t = t∗ gives

y(t∗ + ετ) = y∗(t∗) + ẏ(t∗)ετ + o(ε) = y∗(t∗) + g(y∗(t∗), u∗(t∗))ετ + o(ε)

=: y∗(t∗) + εδ(τ) + o(ε). (4.9)

For τ < 0, we have y(t∗ + ετ) = y∗(t∗ + ετ) and the first-order Taylor
expansion of y∗ around t = t∗ gives the same result. The vector εδ(τ)
describes the infinitesimal (first-order in ε) perturbation of the terminal
point. By definition, δ(τ) depends linearly on τ . As we vary τ over R,
keeping ε fixed, the points y∗(t∗) + εδ(τ) form a line through y∗(t∗). We
denote this line by ~ρ; see Figure 4.4. Every point on ~ρ corresponds to a
control uτ for some τ . On the other hand, the approximation of y(t∗ + ετ)
by y∗(t∗) + εδ(τ) is valid only in the limit as ε → 0. So, δ(τ) tells us the
direction—but not the magnitude—of the terminal point deviation caused
by an infinitesimal change in the terminal time. The arrow over ρ is meant
to indicate that points on the line correspond to perturbation directions.
Note that we are describing deviations of the terminal point in the (x0, x)-
space only, ignoring the differences in the terminal times; accordingly, the
time axis is not included in the figures.
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Figure 4.4: The effect of a temporal control perturbation

4.2.3 Spatial control perturbation

We now construct control perturbations known as “needle” perturbations, or
Pontryagin-McShane perturbations. As the former name suggests, they will
be represented by pulses of short duration; the reason for the latter name
is that perturbations of this kind were first used by McShane in calculus of
variations (see Section 3.1.2) and later adopted by Pontryagin’s school for
the proof of the maximum principle.



3rd Step of the Proof

S3: Spatial control perturbation

Needle control variation

uω,I(t) =
{
ω if t ∈ I
u∗(t) otherwise

THE MAXIMUM PRINCIPLE
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Let w be an arbitrary element of the control set U . Consider the interval
I := (b− εa, b] ⊂ (t0, t

∗), where b 6= t∗ is a point of continuity3 of u∗, a > 0
is arbitrary, and ε > 0 is small. We define the perturbed control

uw,I(t) :=

{
u∗(t) if t /∈ I,

w if t ∈ I.

Figure 4.5 illustrates this control perturbation and the resulting state tra-
jectory perturbation. As the figure suggests, the perturbed trajectory y
corresponding to uw,I will deviate from y∗ on the interval I and afterwards
will “run parallel” to y∗. We now proceed to formally characterize the de-
viation over I; the behavior of y over the interval [b, t∗] will be studied in
Section 4.2.4.
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Figure 4.5: A spatial control perturbation and its effect on the trajectory

We will let ≈ denote equality up to terms of order o(ε). The first-order
Taylor expansion of y∗ around t = b gives

y∗(b− εa) ≈ y∗(b) − ẏ∗(b)εa. (4.10)

Rearranging terms and using the fact that y∗ satisfies the differential equa-
tion (4.7) with u = u∗, we have

y∗(b) ≈ y∗(b− εa) + g(y∗(b), u∗(b))εa. (4.11)

On the other hand, the first-order Taylor expansion of the perturbed solution
y around t = b− εa yields

y(b) ≈ y(b− εa) + ẏ(b− εa)εa

where by ẏ(b−εa) we mean the right-sided derivative of y at t = b−εa. Since
y(b − εa) = y∗(b − εa) by construction and y satisfies (4.7) with u = uw,I ,
we obtain

y(b) ≈ y∗(b− εa) + g(y∗(b− εa), w)εa. (4.12)

3The reason for this assumption is that the subsequent Taylor expansions rely on y
being differentiable at t = b.



3rd Step of the Proof (continued)

Throughout, symbol ≈ stands for equality up to terms of o(ε):

Taylor expansion y∗(b− εa) ≈ y∗(b)− ẏ∗(b)εa at t = b

Due to the state equation, it follows

y∗(b) ≈ y∗(b− εa) + g(y∗(b), u∗(b))εa

On the other hand

Taylor expansion y(b) ≈ y(b− εa) + ẏ(b− εa)εa at t = b− εa

y(b− εa) = y∗(b− εa) ⇓ ẏ(t) = g(y, uω,I)

y(b) ≈ y∗(b− εa) + g(y∗(b− εa), ω)εa

Moreover, y(b) ≈ y∗(b− εa) + g(y∗(b), ω)εa because



3rd Step of the Proof (continued)

Taylor expansion

g(y∗(b−εa), ω)εa ≈ g(y∗(b), ω)εa+gy(y∗(b), ω)[y∗(b−εa)−y∗(b)]εa

captures the second term of the order ε2.

Comparing

y∗(b) ≈ y∗(b− εa) + g(y∗(b), u∗(b))εa
y(b) ≈ y∗(b− εa) + g(y∗(b), ω)εa

one concludes y(b) ≈ y∗(b) + νb(ω)εa where

νb(ω) = g(y∗(b), ω)− g(y∗(b), u∗(b))



4th Step of the Proof

S4: Variational equation

The current goal is to study the propagation ψ(t) : [b, t∗]→ Rn+1 of
the deviation of the perturbed trajectory from the optimal one:

y(t) = y∗(t) + εψ(t) + o(ε) =: y(t, ε)

where it was just shown that ψ(b) = νb(ω)a. Also it is clear that

ψ(t) = yε(t, 0)

The perturbed trajectory is governed by the integral equation

y(t, ε) = y(b, ε) +
∫ t

b
g(y(s, ε), u∗(s))ds



4th Step of the Proof (continued)

Differentiating the integral equation at ε = 0 yields

yε(t, 0)︸ ︷︷ ︸
ψ(t)

= νb(ω)a+
∫ t

b
gy(y(s, 0), u∗(s)) yε(s, 0)︸ ︷︷ ︸

ψ(s)

ds

thereby resulting in

ψ(t) = νb(ω)a+
∫ t

b
gy(y∗(s), u∗(s))ψ(s)ds

It follows

Variational equation ψ̇ = gy(y∗, u∗) = gy
∣∣
∗︸︷︷︸

A∗(t)

ψ = A∗(t)ψ

or in terms of ψ = (η0, ηT )T :

η̇0 = (Lx)T
∣∣
∗η,

η̇ = fx
∣∣
∗η



4th Step of the Proof (continued)

THE MAXIMUM PRINCIPLE
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Differentiating both sides of this equation with respect to ε at ε = 0 and
using (4.16) with t = b and (4.17), we obtain

yε(t, 0) = νb(w)a+

∫ t

b
gy(y(s, 0), u

∗(s))yε(s, 0)ds

which, in view of (4.16) and (4.18), amounts to

ψ(t) = νb(w)a+

∫ t

b
gy(y

∗(s), u∗(s))ψ(s)ds.

Taking the derivative with respect to t, we conclude that ψ satisfies the
differential equation

ψ̇ = gy(y
∗, u∗)ψ = gy|∗ ψ. (4.19)

We will use this equation to describe how spatial perturbations propagate
with time. Pictorially, the role of ψ is illustrated in Figure 4.6, with the
understanding that the labels involving ψ are accurate only up to terms of
order o(ε).
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Figure 4.6: Propagation of a spatial perturbation

The equation (4.19) can be written in the form

ψ̇ = A∗(t)ψ (4.20)

where A∗(t) := gy|∗ (t). This system is simply the linearization of the orig-
inal system (4.7) around the optimal trajectory y∗. Recall that a more
detailed description of the system (4.7) is given by (4.5). Letting (η0, η) be
the corresponding components of ψ and writing out the variational equa-
tion (4.19) in terms of these components, we easily arrive at

η̇0 = (Lx)T
∣∣
∗η,

η̇ = fx|∗ η

Summarizing

y(t∗) = y∗(t∗) + εψ(t∗) + o(ε)

where

ψ(t∗) = Φ∗(t∗, b)ψ(b) = Φ∗(t∗, b)νb(ω)a

provided that Φ∗(·, ·) is the state transition matrix for ψ̇ = A∗(t)ψ.



5th Step of the Proof

S5: Terminal cone

Resulting state variation y(t∗) = y∗(t∗) + εΦ∗(t∗, b)νb(ω)a+ o(ε)

Setting

δ(ω, I) := Φ∗(t∗, b)νb(ω)a

yields

y(t∗) = y∗(t∗) + εδ(ω, I) + o(ε)

where the direction ρ̄(ω, b) of δ(ω, I) does not depend of the scalar a.

All admissible rays ρ̄(ω, b) form a cone P̄ with vertex at y∗(t∗).

In general, P̄ is non-convex.



5th Step of the Proof (continued)

Question: Is there a perturbation, resulting in εδ(ω1, I1) + εδ(ω2, I2)
for some control values ω1, ω2 and intervals I1 = (b1 − εa1, b1),
I2 = (b2 − εa2, b2), and ε small enough?

THE MAXIMUM PRINCIPLE
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4.2.5 Terminal cone

We now want to describe geometrically the combined effect of the temporal
and spatial control perturbations on the terminal state. The vector εδ(w, I)
describes the infinitesimal (first-order in ε) perturbation of the terminal state
caused by the needle perturbation with parameters w and I. (It corresponds
to the vector labeled as εψ(t∗) in Figure 4.6.) From the definition (4.24) of
δ(w, I), it is clear that its direction depends only on w and b, but not on
a. We let ~ρ(w, b) denote the ray in this direction originating at y∗(t∗). If
we keep w, b, and ε fixed, ~ρ(w, b) consists of the points y∗(t∗) + εδ(w, I) for
various values of a. The construction of ~ρ(w, b) is analogous to that of ~ρ in
Section 4.2.2, except that ~ρ(w, b) is unidirectional (because both a and ε are
positive) whereas ~ρ was bidirectional. We also let ~P denote the union of the
rays ~ρ(w, b) for all possible values of w and b. Then ~P is a cone with vertex
at y∗(t∗). Note that this cone is not convex; for example, if the control set
U (in which w takes values) is finite, then ~P will in general be a union of
isolated rays starting at y∗(t∗).

Let us now ask ourselves the following question: is there a spatial con-
trol perturbation such that the corresponding first-order perturbation of the
terminal point is, say, εδ(w1, I1) + εδ(w2, I2) for some control values w1, w2

and intervals I1 = (b1−εa1, b1] and I2 = (b2−εa2, b2]? We will now see that
the right way to “add” two needle perturbations is to concatenate them,
i.e., to perturb u∗ both on I1 (by setting it equal to w1 there) and on I2 (by
setting it equal to w2). Here we are assuming that b1 < b2, so that for ε
small enough I1 and I2 do not overlap. Such a spatial perturbation is shown
in Figure 4.7.

PSfrag replacements

t

U

u∗

b1 b2

w1

w2

Figure 4.7: “Adding” spatial perturbations

The resulting first-order perturbation of the terminal point will then be
the sum εδ(w1, I1) + εδ(w2, I2). This is true simply because the variational
equation, which propagates first-order state perturbations up to the terminal
time, is linear. Indeed, according to the formulas derived in the two previous

Answer: Yes because of the linearity of the variational equation.



5th Step of the Proof (continued)

Indeed, as has been shown

y(b1) = y∗(b1) + νb1(ω1)εa1︸ ︷︷ ︸
εψ(b1)

+o(ε)

at the end of the first perturbation interval. Then

y(b2) = y∗(b2) + ε
[
Φ∗(b2, b1)νb1(ω1)a1 + νb2(ω2)a2

]
+ o(ε)

at the end of the second perturbation interval.

Finally, by the semigroup property Φ∗(t∗, b2)Φ∗(b2, b1) = Φ∗(t∗, b1),

y(t∗) = y∗(t∗) + εΦ∗(t∗, b2)
[
Φ∗(b2, b1)νb1(ω1)a1 + νb2(ω2)a2

]
+ o(ε)

= y∗(t∗) + εΦ∗(t∗, b1)νb1(ω1)a1 + εΦ∗(t∗, b2)νb2(ω2)a2 + o(ε)
= y∗(t∗) + εδ(ω1, I1) + εδ(ω1, I1) + o(ε).



5th Step of the Proof (continued)

The terminal cone Ct∗ is the set of points of the form

y = y(t∗) + ε
[
β0 + Σm

i=1β1δ(ωi, Ii)
]

where ε > 0, β0, β1, . . . , βm ≥ 0, the temporal variation δ(τ) comes
with some τ , and the spatial variations δ(ωi, Ii) come with some ωi
and Ii.

THE MAXIMUM PRINCIPLE
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and call it the terminal cone. It is easy to check that Ct∗ is again a convex
cone, with vertex at y∗(t∗). This construction is illustrated in Figure 4.8,
where Ct∗ is the infinite “wedge” between the two half-planes.
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Figure 4.8: The terminal cone

By the same reasoning as before, we can show that for every point y ∈ Ct∗

given by (4.25) there exists a perturbation of u∗ such that the terminal point
of the perturbed trajectory satisfies

y(tf ) = y + o(ε).

To obtain the desired control perturbation, we need to apply a concatenated
spatial perturbation as explained above, followed by the temporal pertur-
bation that adjusts the terminal time by β0ετ . Since the intervals Ii are
strictly inside [t0, t

∗], they do not interfere with the temporal perturbation
(for small enough ε). The fact that the resulting total first-order perturba-
tion of the terminal point is indeed the correct one hinges on the linearity
of the variational equation and on the linear dependence of δ(τ) on τ .

4.2.6 Key topological lemma

Up until now, we have not yet used the fact that u∗ is an optimal control and
y∗ is an optimal trajectory. As discussed in Section 4.2.1 and demonstrated
in Figure 4.2, optimality means that no other trajectory y corresponding to

another control u can reach the line S ′ (the vertical line through
(

0
x1

)
in

the y-space) at a point below y∗(t∗). Since the terminal cone Ct∗ is a linear
approximation of the set of points that we can reach by applying perturbed
controls, we expect that the terminal cone should face “upward.”

To formalize this observation, consider the vector

µ :=
(
−1 0 · · · 0

)T ∈ Rn+1 (4.26)

and let ~µ be the ray generated by this vector (which points downward) orig-
inating at y∗(t∗). Optimality suggests that ~µ should be directed outside of
Ct∗ , a situation illustrated in Figure 4.9. Since Ct∗ is only an approximation,
the correct claim is actually slightly weaker.

The principal feature: ∀ y ∈ Ct∗ ∃ a perturbation of u∗ such that the
terminal point y(tf ) satisfies y(tf ) = y + o(ε)

(follows from the linearity of the variational equation and the linear
dependence of δ(τ) on τ )



6th Step of the Proof

S6: Key topological lemma

The optimality of u∗ is now in play.

Let µ̄ be the ray, originated at y∗(t∗) and generated by the
downward-pointed vector

µ := (−1, 0 · · · 0)T ∈ Rn+1

Due to the optimality, µ̄ is to be directed outside of the cone Ct∗
118
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Figure 4.9: Illustrating the statement of Lemma 4.1

Lemma 4.1. ~µ does not intersect the interior of the cone Ct∗.

In other words, ~µ can in principle touch Ct∗ along the boundary, but it
cannot lie inside it. We note that since Ct∗ is a cone, ~µ intersects its interior
if and only if all points of ~µ except y∗(t∗) are interior points of Ct∗ .

Let us see what would happen if the statement of the lemma were false
and ~µ were inside Ct∗ . By construction of the terminal cone, as explained
at the end of Section 4.2.5, there would exist a (spatial plus temporal)
perturbation of u∗ such that the terminal point of the perturbed trajectory
y would be given by

y(tf ) = y∗(t∗) + εβµ+ o(ε)

for some (arbitrary) β > 0. Writing this out in terms of the components
(x0, x) of y and recalling the definition (4.26) of µ and the relation (4.6)
between x0 and the cost, we obtain

J(u) = J(u∗) − εβ + o(ε),

x(tf ) = x1 + o(ε)

where u is the perturbed control that generates y. Presently there is no
direct contradiction with optimality of u∗ yet, because the terminal point
x(tf ) of the perturbed trajectory x is different from the prescribed terminal
point x1, i.e., x need not hit the target set. Thus we see that although
Lemma 4.1 certainly seems plausible, it is not obvious.

Let us try to build a more convincing argument in support of Lemma 4.1.
If we suppose that the statement of the lemma is false, then we can pick a
point ŷ on the ray ~µ below y∗(t∗) such that ŷ is contained in Ct∗ together
with a ball of some positive radius ε around it; let us denote this ball by
Bε. For a suitable value of β > 0, we have ŷ = y∗(t∗) + εβµ. Since the
points in Bε belong to Ct∗ , they are of the form (4.25) and can be written as

Lemma
µ̄ does not intersect the interior of Ct∗ .



6th Step of the Proof (continued)

Suppose Lemma is false. Then ∃ŷ ∈ µ̄ below y∗(t∗) such that
ŷ ∈ Ct∗ together with a ball Bε ⊂ Ct∗ ⇒ For a suitable β > 0, one
has

ŷ = y∗(t∗) + εβµ

Since Bε ⊂ Ct∗ , its points are of the form y∗(t∗) + εν where εν are
first-order perturbations, arising from the earlier control perturbations.
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y∗(t∗)+εν where the vectors εν are first-order perturbations of the terminal
point arising from control perturbations constructed earlier. We know that
the actual terminal points of trajectories corresponding to these control
perturbations are given by

y∗(t∗) + εν + o(ε). (4.27)

We denote the set of these terminal points by B̃ε; we can think of it as a
“warped” version of Bε, since it is o(ε) away from Bε.

In the above discussion, ε > 0 was fixed; we now make it tend to 0. The
point y∗(t∗) + εβµ, which we relabel as ŷε to emphasize its dependence on
ε, will approach y∗(t∗) along the ray ~µ as ε → 0 (here β is the same fixed
positive number as in the original expression for ŷ). The ball Bε, which
now stands for the ball of radius ε around ŷε, will still belong to Ct∗ and
consist of the points y∗(t∗) + εν for each value of ε. Terminal points of
perturbed state trajectories (the perturbations being parameterized by ε)
will still generate a “warped ball” B̃ε consisting of points of the form (4.27).
Figure 4.10 should help visualize this construction.
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Figure 4.10: Proving Lemma 4.1

Since the center of Bε is on ~µ below y∗(t∗), the radius of Bε is ε, and
the “warping” is of order o(ε), for sufficiently small ε the set B̃ε will still
intersect the ray ~µ below y∗(t∗). But this means that there exists a perturbed
trajectory x which hits the desired terminal point x1 with a lower value of
the cost. The resulting contradiction proves the lemma.

The above claim about a nonempty intersection of B̃ε and ~µ seems intu-
itively obvious. The original proof of the maximum principle in [PBGM62]
states that this fact is obvious, but then adds a lengthy footnote explaining

• Actual terminal points
y∗(t∗) + εν + o(ε) of these
perturbed trajectories form the set
B̃ε which is o(ε) away from Bε

• Let ε→ 0, then ŷ := y∗((t∗) + εβµ
approaches y∗((t∗).

• Since the center of Bε is on µ̂ below
y∗(t∗) then for sufficiently small ε,
set B̃ε intersects µ̄ below y∗(t∗), too
that contradicts the optimality.



7th Step of the Proof

S7: Separating hyperplane

Theorem (Separating Hyperplane Theorem of Convex Analysis)
There exists a hyperplane separating two nonempty disjoint convex
sets.

By Theorem, there exists a plane, separating the ray µ̄ from the
interior1 of Ct∗ , and hence from Ct∗ itself.
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Lemma 4.1. ~µ does not intersect the interior of the cone Ct∗.

In other words, ~µ can in principle touch Ct∗ along the boundary, but it
cannot lie inside it. We note that since Ct∗ is a cone, ~µ intersects its interior
if and only if all points of ~µ except y∗(t∗) are interior points of Ct∗ .

Let us see what would happen if the statement of the lemma were false
and ~µ were inside Ct∗ . By construction of the terminal cone, as explained
at the end of Section 4.2.5, there would exist a (spatial plus temporal)
perturbation of u∗ such that the terminal point of the perturbed trajectory
y would be given by

y(tf ) = y∗(t∗) + εβµ+ o(ε)

for some (arbitrary) β > 0. Writing this out in terms of the components
(x0, x) of y and recalling the definition (4.26) of µ and the relation (4.6)
between x0 and the cost, we obtain

J(u) = J(u∗) − εβ + o(ε),

x(tf ) = x1 + o(ε)

where u is the perturbed control that generates y. Presently there is no
direct contradiction with optimality of u∗ yet, because the terminal point
x(tf ) of the perturbed trajectory x is different from the prescribed terminal
point x1, i.e., x need not hit the target set. Thus we see that although
Lemma 4.1 certainly seems plausible, it is not obvious.

Let us try to build a more convincing argument in support of Lemma 4.1.
If we suppose that the statement of the lemma is false, then we can pick a
point ŷ on the ray ~µ below y∗(t∗) such that ŷ is contained in Ct∗ together
with a ball of some positive radius ε around it; let us denote this ball by
Bε. For a suitable value of β > 0, we have ŷ = y∗(t∗) + εβµ. Since the
points in Bε belong to Ct∗ , they are of the form (4.25) and can be written as

1If the interior of Ct∗ is empty then there exists a plane that contains Ct∗ , thus
separating trivially Ct∗ and µ̄.



7th Step of the Proof (continued)

Let

P ∗ =
(
p∗0
p∗(t∗)

)
∈ Rn+1

be the normal vector to the separating hyperplane.

Hyperplane equation: < P ∗, y >=< P ∗, y∗(t∗) >

Separation property is analytically formalized as

< P ∗, δ >≤ 0 ∀δ : y∗(t∗) + δ ∈ Ct∗

and
< P ∗, µ >≥ 0

where µ = (−1, 0, . . . , 0)T is the generator of the ray µ̄.

The latter property requires p∗0 ≤ 0 whereas the former property
serves as the to-be-defined terminal condition for the adjoint system.



8th Step of the Proof

S8: Adjoint equation

Linear time-varying systems, governed by

ẋ = Ax, ż = −AT z,

are adjoint to each other.

The inner product of their solutions remains constant:

d

dt
< z, x >=< ż, x > + < z, ẋ >= (−AT z)Tx+ zTAx = 0

Variational equations η̇0 = (Lx)T
∣∣
∗η, η̇ = fx

∣∣
∗η

Adjoint equations ṗ0 = 0, ṗ = −(Lx)
∣∣
∗p0 − (fx)T

∣∣
∗p



8th Step of the Proof (continued)

Coupling the adjoint equations to the terminal conditions determined
by the separating hyperplane, yields p0(t) = p∗0 ≤ 0 while the latter
equation is represented in the canonical Hamiltonian form

ṗ = −Hx(x∗, u∗, p, p∗0)
thus establishing the first statement of the maximum principle.

By the property of the inner product to remain constant for the adjoint
variable P ∗(t) =

(
p∗0(t), p∗(t)T

)T
, one concludes

< P ∗(t), ψ(t) >=< P ∗(t∗), ψ(t∗) > ∀t ∈ [t0, t∗]
for any solution ψ = (η0, ηT )T of the variational equation.

Since the normal vector

(
p∗0
p∗(t∗)

)
to the separating hyperplane is

nontrivial, the solution of the LTV adjoint system remains nonzero(
p∗0
p∗(t)

)
6= 0 ∀t ∈ [t0, t∗]

as required by the maximum principle.



9th Step of the Proof

S9a): Hamiltonian maximization condition

Infinitesimal state variation of the terminal point

y(t∗) ≈ y∗(t∗) + εΦ∗(t∗, b)νb(ω)a ∈ Ct∗

Thus, taking into account a > 0 and ε > 0, and applying the
separating hyperplane property

< P ∗, δ >≤ 0 ∀δ : y∗(t∗) + δ ∈ Ct∗

to δ = εΦ∗(t∗, b)νb(ω)a yield

< P ∗(t∗),Φ∗(t∗, b)νb(ω) >≤ 0

where the adjoint variable P ∗(t) =
(
p∗0(t), p∗(t)T

)T



Hamiltonian maximization condition (continued)

By invoking the adjoint inner property

< P ∗(t), ψ(t) >=< P ∗(t∗), ψ(t∗) > ∀t ∈ [t0, t∗]

for the variational equation solution ψ(t) := Φ∗(t∗, b)νb(ω), initialized
with ψ(b) = νb(ω), it follows that < P ∗(b), νb(ω) >≤ 0. Since

νb(ω) = g(y∗(b), ω)−g(y∗(b), u∗(b)) =
(
L(x∗(b), ω)− L(x∗(b), u∗b))
f(x∗(b), ω)− f(x∗(b), u∗b))

)
,

and P ∗(b) =
(
p∗0
p∗(b)

)
, it follows

〈(
p∗0
p∗(b)

)
,

(
L(x∗(b), ω)
f(x∗(b), ω)

)〉
︸ ︷︷ ︸

H(x∗(b), ω, p∗(b), p∗
0)

≤
〈(

p∗0
p∗(b)

)
,

(
L(x∗(b), u∗(b)
f(x∗(b), u∗(b))

)〉
︸ ︷︷ ︸

H(x∗(b), u∗(b), p∗(b), p∗
0)



9th Step of the Proof

S9b): H|∗ ≡ 0

The separation property

< P ∗, δ >≤ 0 ∀δ : y∗(t∗) + δ ∈ Ct∗

applies,in particular, to

δ(τ) =
(
L(x∗(t∗), u∗(t∗)
f(x∗(t∗), u∗(t∗))

)
τ ∈ Ct∗

Since τ can either be positive or negative it follows〈(
p∗0
p∗(t∗)

)
,

(
L(x∗(t∗), u∗(t∗)
f(x∗(t∗), u∗(t∗))

)〉
︸ ︷︷ ︸

H(x∗(t∗), u∗(t∗), p∗(t∗), p∗
0)

= 0



9th Step of the Proof (continued)

H|∗(·) = H(x∗(·), u∗(·), p∗(·), p∗0) is continuous in time.

Indeed, by the Hamiltonian maximization property:

lim
b→t−

H(x∗(b),
u∗(t+)︷︸︸︷
ω , p∗(b), p∗0)︸ ︷︷ ︸

H(x∗(t), u∗(t+), p∗(t), p∗
0)

≤ lim
b→t−

H(x∗(b), u∗(b), p∗(t), p∗0)︸ ︷︷ ︸
H(x∗(t), u∗(t−), p∗(t), p∗

0)
(2)

lim
b→t+

H(x∗(b), u∗(b), p∗(b), p∗0)︸ ︷︷ ︸
H(x∗(t), u∗(t∗+), p∗(t), p∗

0)

≥ lim
b→t+

H(x∗(b),
u∗(t−)︷︸︸︷
ω , p∗(t), p∗0)︸ ︷︷ ︸

H(x∗(t), u∗(t−), p∗(t), p∗
0)

(3)
It follows H(x∗(t), u∗(t−), p∗(t), p∗0) = H(x∗(t), u∗(t+), p∗(t), p∗0).



9th Step of the Proof (continued)

Thus, H|∗(·) is continuous and H|∗(t∗) = 0⇒ it remains to show

Ḣ|∗(·) = 0 a.e. (4)

Function m(x, p) := maxu∈U H(x, u, p, p∗0) is Lipschitz (hence,
absolutely) continuous in time along x = x∗(t), p = p∗(t) because of

H(x∗(t′), u∗(t), p∗(t′), p∗0)−H(x∗(t), u∗(t), p∗(t), p∗0) ≤
m(x∗(t′), p∗(t′))−m(x∗(t), p∗(t), p∗0 ≤

H(x∗(t′), u∗(t′), p∗(t′), p∗0)−H(x∗(t), u∗(t′), p∗(t), p∗0)

and assumptions on the system in question. Thus, by Liberzon’s
Exersise 4.6 your homework, the Hamiltonian property (4) is
concluded.



10th Step of the Proof

S10: Transversality condition for BVEP (x(tf ) ∈ S1)

Set D ⊂ Rn+1 of all y =
(
x0

x

)
∈ Rn+1 with x0-component lower

then the optimal cost, whose x-component is in S1. Its linear
approximation is the linear span of µ̄ and the tangent space Tx∗(t∗)S1:

T :=
{
y ∈ Rn+1 : y = y∗(t∗)+

(
0
d

)
+βµ, d ∈ Tx∗(t∗)S1, β ≥ 0

}
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cvoc-formatted August 24, 2011 7x10

127

PSfrag replacements

x1···k

S1

(
0
x0

)

x∗(t∗)

xk+1···n

y∗(t∗)

x0

Tx∗(t∗)S1

{x0,∗(t∗)} × S1

{x0,∗(t∗)} × Tx∗(t∗)S1

~µ

(p∗0, p
∗(t∗))

Figure 4.12: Illustrating the construction of the set T

at ŷε whose radius is of order ε − o(ε). Furthermore, since T and D are
tangent to each other along ~µ, the distance from ŷε to D is also of order
o(ε). Hence, for ε small enough, B̃ε actually intersects D. But this, as we
already noted, contradicts optimality of y∗, and the lemma is established.
The preceding argument is illustrated in Figure 4.13, where the plane and
the curved surface represent T and D, respectively, the shaded object is the
portion of B̃ε that lies between T and D, and the ray in T containing ŷε,
ε > 0 is also shown.

By Lemma 4.2 and the Separating Hyperplane Theorem, there exists a
hyperplane that separates T and Ct∗ . We denote its normal vector by (4.28)
as before. Figure 4.14 depicts Ct∗ , T , and the separating hyperplane. In
view of the definition (4.37) of T and the fact that d = 0 belongs to Tx∗(t∗)S1,
the separation property still gives us the inequalities (4.29) and (4.30). Thus
all the constructions and conclusions of Sections 4.2.8 and 4.2.9 still apply,
and so we know that the first three statements of the maximum principle
are true. On the other hand, writing the separation property for vectors in
T with β (the ~µ-component) equal to 0, we obtain the additional inequality

〈(
p∗0

p∗(t∗)

)
,

(
0
d

)〉
= 〈p∗(t∗), d〉 ≥ 0 ∀ d ∈ Tx∗(t∗)S1. (4.38)

For each d ∈ Tx∗(t∗)S1 we also have −d ∈ Tx∗(t∗)S1, as is clear from (4.4).
This fact and (4.38) imply that actually 〈p∗(t∗), d〉 = 0 for all d ∈ Tx∗(t∗)S1,



10th Step of the Proof (continued)

Lemma
T does not intersect the interior of the cone Ct∗ .

Proof is similar to that of Lemma 4.1.
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Figure 4.13: Proving Lemma 4.2

which is precisely the desired transversality condition (4.3). Our proof of
the maximum principle for the Basic Variable-Endpoint Control Problem is
now complete.

Note that in the special case when S1 = Rn (a free-time, free-endpoint
problem), the hyperplane separates Ct∗ from the entire (n+ 1)-dimensional
half-space that lies below y∗(t∗). Clearly, this hyperplane must be horizontal,
hence its normal must be vertical and we conclude that p∗(t∗) = 0. This is
consistent with (4.3) because Tx∗(t∗)S1 = Rn in this case.

4.3 DISCUSSION OF THE MAXIMUM PRINCIPLE

Our main objective in the remainder of this chapter is to gain a better
understanding of the maximum principle by discussing and interpreting its
statement and by applying it to specific classes of problems. We begin this
task here by making a few technical remarks.

One should always remember that the maximum principle provides nec-
essary conditions for optimality. Thus it only helps single out optimal con-
trol candidates, each of which needs to be further analyzed to determine
whether it is indeed optimal. The reader should also keep in mind that an
optimal control may not even exist (the existence issue will be addressed in
detail in Section 4.5). For many problems of interest, however, the optimal
solution does exist and the conditions provided by the maximum principle

By Lemma 4.2 and Separating Hyperplane Theorem, there exists a
hyperplane that separates T and Ct∗ .
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Figure 4.14: A separating hyperplane for the Basic Variable-Endpoint Control
Problem

are strong enough to help identify it, either directly or after a routine addi-
tional elimination process. We already saw an example supporting this claim
in Exercise 4.1 and will study other important examples in Section 4.4.

When stating the maximum principle, we ignored the distinction between
different kinds of local minima by working with a globally optimal control u∗,
i.e., by assuming that J(u∗) ≤ J(u) for all other admissible controls u that
produce state trajectories satisfying the given endpoint constraint. However,
it is clear from the proof that global optimality was not used. The control
perturbations used in the proof produced controls u which differ from u∗ on
a small interval of order ε in length, making the L1 norm of the difference,∫ tf
t0

|u(t) − u∗(t)|dt, small for small ε. The resulting perturbed trajectory
x, on the other hand, was close to the optimal trajectory x∗ in the sense
of the 0-norm, i.e., maxt0≤t≤tf |x(t) − x∗(t)| was small for small ε (as is
clear from the calculations given in Sections 4.2.2–4.2.4). It can be shown
that the conditions of the maximum principle are in fact necessary for local
optimality when closeness in the (x, u)-space is measured by the 0-norm for
x and L1 norm for u; we stress that the Hamiltonian maximization condition
(statement 2 of the maximum principle) remains global. At this point it may
be instructive to think of the system ẋ = u as an example and to recall the
discussion in Section 3.4.5 related to Figure 3.6. In that context, the notion
of a local minimum with respect to the norm we just described is in between
the notions of weak and strong minima; indeed, weak minima are defined

Writing the separation property for vectors in T with β = 0 yields〈(
p∗0
p∗(t∗)

)
,

(
0
d

)〉
= 〈p∗(t∗), d〉 ≥ 0 ∀d ∈ Tx∗(t∗)S1

where p∗0 and p∗(t∗)) are the components of the normal vector to the
separating hyperplane.



10th Step of the Proof (continued)

Since d ∈ Tx∗(t∗)S1⇒−d ∈ Tx∗(t∗)S1 it follows

〈p∗(tf ), d〉 = 0 ∀d ∈ Tx∗(tf )S1

where

Tx∗(tf )S1 = {d ∈ Rn : 〈∇hi(x∗(tf )), d〉 = 0, i = 1, . . . n− k}

The BVEP transversality condition is thus established.

The proof is completed!


