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Optimal Control 2018

L1:
L2:
L3:
L4:
L5:
L6:
L7:

Functional minimization, Calculus of variations (CV) problem
Constrained CV problems, From CV to optimal control
Maximum principle, Existence of optimal control

Maximum principle (proof)

Dynamic programming, Hamilton-Jacobi-Bellman equation
Linear quadratic regulator

Numerical methods for optimal control problems

Exercise sessions (20%):

Solve 50% of problems in advance. Hand-in later.
Mini-project (20%):

Study and present your own optimal control problem.
Written take-home exam (60%).



Summary of L3: Basic problem formulation

Find a control u € U C R™ that minimizes the cost

ty
Jw) = [ LG@(t), u(e) dt + K (o)
tg S————
time independent
where
o &= f(x(t),u(t)), z(to) = z0, z € R", K(zy) =0, (t5,z¢) €S
N—————’
time independent

e f, fa, L, L, continuous

« Basic fixed-endpoint problem (BFEP) (¢ free, s fixed)
S = [tg,00) x {z1}
« Basic variable-endpoint problem (BVEP) (¢, free, z; € S7)
S = [tg,00) x S1
S1={zeR": hi(z) =hao(z) =" hp_r(z) =0}
h; € C{R" - R),i=1,...,n—k.



Summary of L3: Maximum principle

Define the Hamiltonian
H(z,u,p,po) = (p, f(x,u)) + poL(z,u).

Assume that the basic problem has a solution (u*(¢), *(t)). Then
there exist a function p* : [tg,t¢] — R™ and a constant pj < 0
satisfying (pj, p*(t)) # (0,0) Vt € [to,ts] and

1) &% = Hp(t, 2", u*,p*), p* = —Hy(t, 2", u", p").

2) H(z*(t),u” (t),p" (), po) = H (" (t), u(t), p*(t), po)

Vt € [to, tf], Vu € U.
3) H(z*(t),u"(t),p"(t),p5) =0 Vt € [to, ty]
4) (p*(t),d) =0 Vd € Tpu(;,)S1 (Only for BVEP)

Tyt f)Sl : tangent space to S1. Transversality condition.



Summary of L3: Transversality condition

<p*(tf),d> =0 VdETx*(tf)Sl. (1

Tx*(tf)Sl = {d e R": <Vhl($*(tf)),d> =0,i=1,...n— k‘}

(1) means p*(ty) is a linear combination of VA, (x*(ty)).
S1={x1} = (1)istrue forall p*(t).
S1=R"(ie, k=n) = p*(ty) =0.

In general, k degrees of freedom for z*(t;) and n — k degrees of
freedom for p* ().



Outline

e Proof of Maximum Principle consists of several steps:

S1:
S2:
S3:
S4:
S5:
S6:
S7:
S8:
S9:
S10:

From Lagrange form to Mayer form
Temporal control perturbation
Spatial control perturbation
Variational equation

Terminal cone

Key topological lemma

Separating hyperplane

Adjoint equation

Hamiltonian properties
Transversality condition



1st Step of the Proof

S1: From Lagrange to Mayer form

An auxiliary state variable

V() = tL(LL’(T),’U,(T))dT, 2% (to)

to

results in the augmented system
i = L(x,u), 2°(ty) =0
= f(z,u), z(ty) = xo

with the cost

gy = [ Do) ue)d =20

to



1st Step of the Proof (continued)

System representation

. L(z,u) \ -

0
x n+1
y(w >€R

results in the Mayer problem

in terms of

J(u) = 2°(t;) — min

v (t")

T

Figure 4.1: The optimal trajectory of the au

1 Figure 4.2: Principle of optimality



2nd Step of the Proof

S2: Temporal control perturbation
Control variation at the terminal time instant
ur(t) = u* (min{t, t*}), t € [to,t+eT]

with an arbitrary 7 € R and a small ¢ > 0, and a new terminal time
t*" 4 eT.
ur(t) ur(t)

t

vttt t* et

Figure 4.3: A temporal perturbation



2nd Step of the Proof (continued)

Taylor expansion around t = t*
y(t" +em) = y* () + (i )er +ol(r) =y (1) +
gy (), u™(t%))eT + o(7) = y*(t*) + £6(7) + o(T)
determines the trajectory variation ¢4 (7) at the terminal point.

Varying 7 € R under fixed ¢ forms a direction p at y* (t*) of
y*(t*) +ed(r).

Figure 4.4: The effect of a temporal control perturbation



3rd Step of the Proof

S3: Spatial control perturbation

Needle control variation

w iftel
uwzl (t) = * H
u*(t) otherwise
W, 1 (t) y(t)
A
w
u®
2
I P
> t >—o >
to b—ea b t* to b—ea b t*

Figure 4.5: A spatial control perturbation and its effect on the trajectory

t



3rd Step of the Proof (continued)

Throughout, symbol = stands for equality up to terms of o(e):
Taylor expansion y*(b —ca) ~ y*(b) —y*(b)ea at t=0b
Due to the state equation, it follows
Yy (b) = y*(b—ea) + g(y* (b), u* (b))ea
On the other hand
Taylor expansion y(b) ~ y(b —ca) + y(b—ca)ea at t=b—ca

yb—ea) =y"(b—ca) | 4(t) = g(y,uwr)
y(b) =y (b—ea) + g(y" (b — ea),w)ea
Moreover, y(b) ~ y* (b — ea) + g(y*(b),w)ea because



3rd Step of the Proof (continued)

Taylor expansion

9(y*(b—ea),w)ea = g(y* (b), w)eatgy (y* (b),w)[y" (b—ea)—y" (b)lea

captures the second term of the order &2.

Comparing

y*(b) = y*(b— ea) + g(y*(b), u*(b))ea
y(b) = y* (b —ca) + g(y*(b),w)ea

one concludes y(b) ~ y*(b) + v,(w)ca where

vp(w) = g(y"(b),w) — gy~ (b), u* (b))



4th Step of the Proof

S4: Variational equation

The current goal is to study the propagation ¢ (¢) : [b, t*] — R"*1 of
the deviation of the perturbed trajectory from the optimal one:

y(t) =y (t) +ep(t) + oe) =: y(t,¢)

where it was just shown that ¢/(b) = v, (w)a. Also it is clear that

P(t) = y:(t,0)

The perturbed trajectory is governed by the integral equation

y(02) = y(0,) + [ gyl 2), " (5)ds



4th Step of the Proof (continued)

Differentiating the integral equation at ¢ = 0 yields

t
0o(8,0) = @)+ [ 9(y(5.0), 0" (5)) (s, 0) ds
P(t) ’ ¥(s)

thereby resulting in
t
vt = w@)a+ [ g,y (s), ' ($)(s)ds
It follows

Variational equation ) = g, (y*,u*) = gyl, ¥ = Au(t)y

orinterms of ¢ = (n



4th Step of the Proof (continued)

Figure 4.6: Propagation of a spatial perturbation

Summarizing
y(t*) = y*(t7) + e (") + o(e)
where
P(t") = Cu(t7,0)1h(b) = u(", D) (w)a

provided that ®..(-, -) is the state transition matrix for 1) = A, (t)1.



5th Step of the Proof

S5: Terminal cone

Resulting state variation y(t*) = y*(t*) + e®.(t*, b)vp(w)a + o(e)
Setting
(w, I) = . (t",b)vp(w)a
yields
y(t7) =y (1) + ed(w, I) + o(e)

where the direction p(w, b) of (w, I') does not depend of the scalar a.
All admissible rays p(w, b) form a cone P with vertex at 3* (*).

In general, P is non-convex.



5th Step of the Proof (continued)

Question: Is there a perturbation, resulting in €0 (w1, I1) + £d(wa, I2)
for some control values w1, w9 and intervals I; = (by — caq, by),
Iy = (by — cag, b2), and € small enough?

A

u*

el

by b

> t

Figure 4.7: “Adding” spatial perturbations

Answer: Yes because of the linearity of the variational equation.



5th Step of the Proof (continued)

Indeed, as has been shown
y(b1) = y*(b1) + v, (w1)ear +o(e)
N————
ep(b1)
at the end of the first perturbation interval. Then
Y(b2) = y* (b2) + [P (b2, b1) vy, (w1)a1 + v, (w2)az] + o(e)
at the end of the second perturbation interval.

Finally, by the semigroup property @, (t*, b2)®. (b, b1) = P, (t*,b1),

Y(t7) = Y (t7) + eQu(t”, b2) [Du(bz, b1) v, (wi)ar + v, (w2)az] + o(e)
= Yy (t") +ePu(t", b1)vp, (w1)ar + eDu(t", ba2)vp, (wa)az + o(e)
= y"(t")+ed(wr, 1) + e0(wy, 1) + o(e).



5th Step of the Proof (continued)

The terminal cone C;- is the set of points of the form
y =y(t*) +e[Bo + L%y B16(wi, Ii)]

where € > 0, fo, 51, - - -, Bm = 0, the temporal variation §(7) comes
with some 7, and the spatial variations ¢ (w;, I;) come with some w;
and I;.

Figure 4.8: The terminal cone

The principal feature: V y € Cy« 3 a perturbation of ©* such that the
terminal point y( ) satisfies y(t;) = y + o(e)

(follows from the linearity of the variational equation and the linear
dependence of §(7) on 7)



6th Step of the Proof

S6: Key topological lemma
The optimality of u* is now in play.
Let /z be the ray, originated at y*(t*) and generated by the
downward-pointed vector
pi=(-1,0---0)7 ¢ R**!

Due to the optimality, 1 is to be directed outside of the cone Cy-
Ci«

Th+1n

i

Figure 4.9: Ilustrating the statement of Lemma 4.1

Lemma
1 does not intersect the interior of Cyx.




6th Step of the Proof (continued)

Suppose Lemma is false. Then 33 € [ below y*(¢*) such that
i € C¢« together with a ball B. C Cy+ = For a suitable 8 > 0, one
has

J=y" (") +ebu
Since B, C Cy, its points are of the form y*(t*) + cv where ev are
first-order perturbations, arising from the earlier control perturbations.

e Actual terminal points
y*(t*) + ev + o(e) of these
perturbed trajectories form the set
B. which is o(¢) away from B,

o Lete — 0,then § := y*((t*) + eBu
approaches y*((t*).

e Since the center of B is on [i below
y*(t*) then for sufficiently small ¢,
set B. intersects /i below y*(t*), too
that contradicts the optimality.

Fioure 4.10: Provine Lemma 4.1



7th Step of the Proof

S7: Separating hyperplane

Theorem (Separating Hyperplane Theorem of Convex Analysis)

There exists a hyperplane separating two nonempty disjoint convex
sets.

By Theorem, there exists a plane, separating the ray 1 from the
interior' of C+, and hence from Cy- itself.

-

Figure 4.9: Ilustrating the statement of Lemma 4.1

'If the interior of Cz+ is empty then there exists a plane that contains C, thus
separating trivially C+ and fi.



7th Step of the Proof (continued)

Let
P=( ey ) ex
be the normal vector to the separating hyperplane.
Hyperplane equation: < P* y >=< P* y*(t*) >
Separation property is analytically formalized as
<P o><0 Vo:y*(t")+0 € Cp

and
<P u>>0
where 1 = (—1,0,...,0)T is the generator of the ray /i.

The latter property requires p;; < 0 whereas the former property
serves as the to-be-defined terminal condition for the adjoint system.



8th Step of the Proof

S8: Adjoint equation
Linear time-varying systems, governed by
i=Ax, z=—-ATz,

are adjoint to each other.

The inner product of their solutions remains constant:

d
o ST >=< sx>4 < z,0>= (AT e+ 2TAz =0

Variational equations 7" = (L,)"|.n, 1= fu|.n

Adjoint equations po =0, p=—(L.)| po— (fa)"|p



8th Step of the Proof (continued)

Coupling the adjoint equations to the terminal conditions determined
by the separating hyperplane, yields po(t) = pj; < 0 while the latter
equation is represented in the canonical Hamiltonian form

]j - _Hz(x*a U*apa pg)
thus establishing the first statement of the maximum principle.

By the property of the inner product to remain constant for the adjoint
variable P*(t) = (p(’ﬁ(t),p*(t)T)T, one concludes

< P*(), (1) >=< P*(t*),%(t*) > Vi € [to, "]
for any solution 1) = (%, )T of the variational equation.
o
p*(t*)

nontrivial, the solution of the LTV adjoint system remains nonzero

<§S(t) ) £0 V€ [ty, "]

aec reqatlired bv the maximiim nrincinle

Since the normal vector to the separating hyperplane is



9th Step of the Proof

S9a): Hamiltonian maximization condition
Infinitesimal state variation of the terminal point
y(*) = y*(t7) + e@u(t7, vy (w)a € Cp-

Thus, taking into account ¢ > 0 and € > 0, and applying the
separating hyperplane property

<P 0><0 Vo:y*"(t")+0 € Cp
to 0 = e®.(t*,b)vp(w)a yield
< PH(t7), . (", b)vp(w) >< 0

where the adjoint variable P*(t) = (pS(t),p*(t)T)T



Hamiltonian maximization condition (continued)

By invoking the adjoint inner property
< P*(1),0(t) >=< P*(t*),(t*) > Vit € [to, t"]

for the variational equation solution 1 (t) := @, (t*, b)v(w), initialized
with 1 (b) = vp(w), it follows that < P*(b), v, (w) >< 0. Since

and P*(b) = < ]’;S(b) > , it follows

H(z* (b),w, p" (b), p§) H(z* (), u"(b),p" (), p5)



9th Step of the Proof

S9b): H|. =0

The separation property

<P 0><0 Vo:y*"(t")+ 0 € Cp

applies,in particular, to
5(7):<L<w (1), (1) )Tecﬁ

Since 7 can either be positive or negative it follows

i L)) \\ _
p() )\ ), )

H (™ (%), u* (t"),p"(t"), p5)




9th Step of the Proof (continued)

H|.(-) = H(z*(-),u*(:),p"(-), p}) is continuous in time.

Indeed, by the Hamiltonian maximization property:

()
lim H(z*(b), 7@ ,p*(b),pf) < lim H(z*(b),u*(b),p" (), pj;)
b—t b—t
H(a* (), u* (t+), p* (1), p) H(z* (), u* (t7), p* (£), p3)

(2)
)
lim H(x*(b),u"(b),p*(b),py) > lim H(z*(b), "w ,p*(t),pp)
b—tt b—tt

H(z"(t),w (¢ 4), p* (), P5) H(z*(8),w" (t7),p" (1), )

3)
It follows H (z*(t), w* (t7),p*(t), p§) = H(z*(t),u*(t*), p* (), p§).



9th Step of the Proof (continued)

Thus, H|.(-) is continuous and H|.(t*) = 0 = it remains to show

H|.()=0 ae. (4)

Function m(z, p) := maxyecy H(x, u, p, pj) is Lipschitz (hence,
absolutely) continuous in time along = = x*(t), p = p*(t) because of
H(z" ("), u"(t),p" ("), pg) — H (2™ (t),u"(t), p"(t),p5) <
m(x ( 7,0 (1) = m(z* (), p" (), P <
H(z™ ("), u*(t"),p"(t"), p5) — H(z"(t),w"(¢'), p"(t), ()

and assumptions on the system in question. Thus, by Liberzon’s

Exersise 4.6 your homework, the Hamiltonian property (4) i
concluded.



10th Step of the Proof

S10: Transversality condition for BVEP (z(t¢) € S)

0
x .
Set D Cc R*tlofally = . € R+ with 2°-component lower

then the optimal cost, whose z-component is in S;. Its linear
approximation is the linear span of i1 and the tangent space TI*(t*)Slz

n * [k 0

Figure 4.12: Tllustrating the cons



10th Step of the Proof (continued)

Lemma
T does not intersect the interior of the cone Cjx.

Proof is similar to that of Lemma 4.1.

Figure 4.13: Proving Lemma 4.2

By Lemma 4.2 and Separating Hyperplane Theorem, there exists a
hyperplane that separates 7" and Cj-.



10th Step of the Proof (continued)

[

Figure 4.14: A separating hyperplane for the Basic Variable-Endpoint Control
Problem

Writing the separation property for vectors in 1" with 8 = 0 yields

<< ié(t*) > , < y >> — (" (t*),d) > 0 Vd € Tye iy Sy

where pj; and p*(t*)) are the components of the normal vector to the
separating hyperplane.



10th Step of the Proof (continued)

Since d € Tx*(t*)Sl = —d¢€ Tx*(t*)Sl it follows

<p*(tf), d> =0 Vde Tx*(tf)Sl

where

Tpe(1yS1 = {d € R™ : (Vhi(a* (7))o d) = 0,0 = 1,...n — k}

The BVEP transversality condition is thus established.

The proof is completed!



