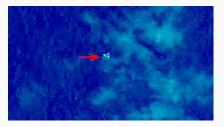
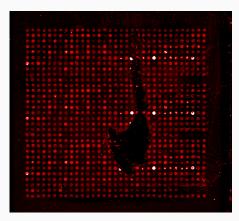
Improving Imputation Using Stacked denoising Autoencoder

Najmeh Abiri


November 22, 2016

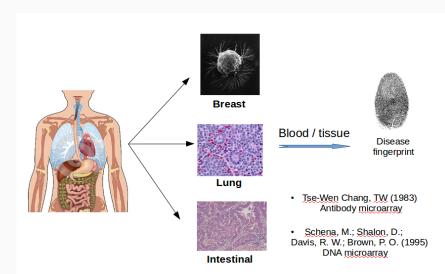
Computational Biology and Biological Physics

Missing Data


Pre-processing data

Astronomy

Outlier?


Biology

Missing Data?

Missing data in Biology

Molecular Patterns of Life

Missing data in Biology

Generate detailed DNA/protein molecular fingerprints and Use them in :


- 1- Diagnosis
- 2- Prognosis
- 3- Classification
- 4- Monitoring

Microarray : - Measuring many(all) proteins/mRNA at once.

- Cancer research : minimize side effects and cost.

Missing data in Biology

The Image Acquisition and Quantification

Library of antibodies is arrayed on the support surface(glass or silicon).

Consequences of missing data:

- Redo the experiments \rightarrow expensive
- Risk of bias \rightarrow depends on the reasons why data are missing
- Non-normally distributed variables \rightarrow imputation procedures could produce some implausibly low or even negative values
- Data that are missing not at random
- Computational problems

Traditional approaches:

- case deletion
- mean imputation: the replacement of a missing observation with the mean of the non-missing observations for that variable.

More technical methods:

- K-nearest neighbors(KNN)¹
- Bayesian principal component (bPCA)
- . . .

¹Improved methods for the imputation of missing data by nearest neighbor methods, Tutz, Gerhard and Ramzan, Shahla(2015)

Data with missing value:

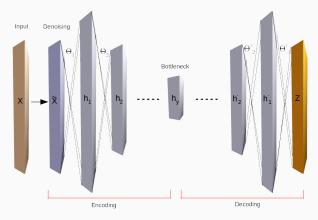
	var 1	var 2	var 3
S 1	123.23	21.234	234.2
S 2	23.345	nan	234.2
÷	:	•	÷

KNN approach is to find k nearest distance and calculate the weighted mean:

Distance matrix : $d_q(x_i, x_j) = \left[\frac{1}{m_{ij}}\sum_{s=1}^{p} |x_{is} - x_{js}|^q\right]^{\frac{1}{q}}$ where m_{ij} denotes the number of valid components in the computation of distances. Weighted imputation: $\hat{x}_{is} = \sum_{j=1}^{k} w_{ij} x_{js}$

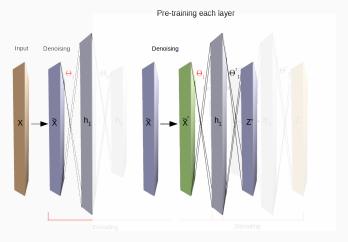
Using deep learning in imputation

Autoencoders


- Trained to encode their input to a lower dimensional representation.
- Capture the significant features by compressing input data to low-dimensional vectors.

• ...

What form of Autoencoders:


- Denoising technique.
- Tied weights: W = W^T, decrease the encoder probability of staying in the linear conformation.
- Symmetric decoder and encoder system \rightarrow butterfly construction.
- Layer-wise unsupervised pre-training(initializing the layer parameters θ = {W, b}), followed by supervised fine-tuning.

Stacked Denoising Autoencoder

Networks architecture: Z is the reconstructed X

Stacked Denoising Autoencoder

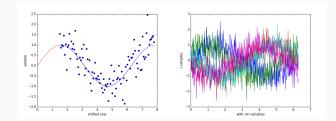
SDA with initialization

Stacked denoising Autoencoder imputation

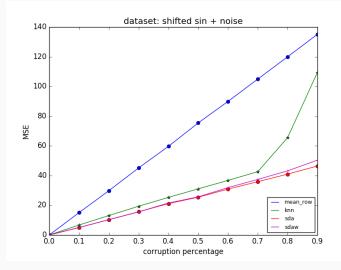
SDA, an imputation box :

- Performance of an SDAi depends on the data correlation.
- Complete training set will give more accurate network.
- A network has the ability to either use the index of missing data in error optimization or calculate without notation.
- Data with higher number of samples gives a better result.
- Iterative imputation (basic algorithms) for estimating an initialization for missing date(nan).

Hyperparameters :


- Number of hidden layers.
- Regularization and updating methods.
- Epoch number for pretraining and finetune training.
- Fraction of denoising for each DA layer (initialization) and fine-tuning.
- Learning rate for each DA layer and main network.
- Mini batch size (for SGD).

Result


Synthetic Data

Shifting a sine function in x axis with a white noise with continuous distribution.

 $S_i = sin(x_i) + z_i,$ where $x_i \in \mathbb{R} \mid 0 + u_i \le x_i \le 2\pi + u_i,$ $u_i \sim \mathcal{U}(0, 2\pi) \& z_i \sim \mathcal{N}(0, 0.5).$

result

Figure 1: SDA with and without initialization. Layers= [100,20,2], fraction: range(.0,.9)

MNIST

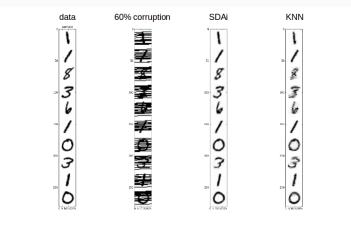


Figure 2: MNIST with 60% corruption

result

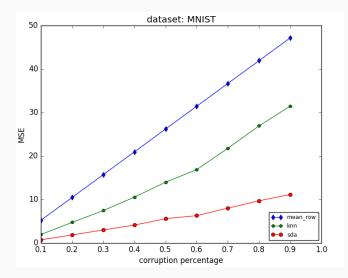


Figure 3: SDA with initialization. Layers= [1000,500,10]

RNA

Data shape : 172 samples and 5000 features. PCA shows 168 important eigenvalues.

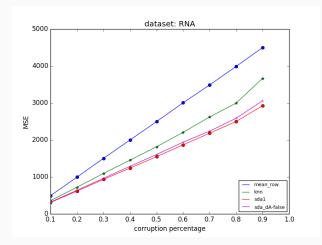


Figure 4: SDA with initialization. Layers= [4000,1000,168]

17

- Other data sets
- Classification

Homework:

- My homework: SDAi from theano to tensorflow
- Our homework : The SDA article Data