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Introduction

@ One-shot learning using DMP
@ Update DMP using reinforcement learning
@ Learn sensor-feedback controller with DMP as nominal controller



Introduction

We propose a framework for fast learning of robotic manipulation tasks that utilizes dynamic
movement primitives, learned from human demonstration, to learn a nominal controller from
a single demonstration.

An actor-critic framework is used to learn a nonlinear state and sensor feedback law, that
acts around the nominal DMP controller.

Fast learning with this model-free approach is achieved by the DMP controller making use
of the robot controllers internal dynamic model.

The off-policy characteristic of the proposed learning algorithm enables learning of the critic
already in the human demonstration phase.



Dynamic Movement Primitives

DMP equations

4= a.(B. (g — q) — 74) + fo(x) (1)
TE = —Q T

fo(x) = o(x)"0



A DMP can be considered a state feedback law that maps the state to reference positions
and velocities S x X — S : u(q, ¢, ).



A DMP can be considered a state feedback law that maps the state to reference positions
and velocities S x X — S : u(q, ¢, ).

To find a torque reference for the robot, the inverse model Eq. (2) may be used. This model
is typically not available and is, for a robot with many degrees of freedom, hard to estimate
from data.

T=M(q)i+ C(g; )i+ G(q) + F(d) + J () fext (2)
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The external force/torque wrench present in assembly scenarios is especially hard to model
in the presence of uncertainty and stiff environments.



Deterministic Policy Gradient

From the Bellman equation

Q% (s,u) = r +9Q"(s1, po(s+))

we get the temporal difference error ¢ associated with approximating the value function )
with Q. The DPG update equations then take on the (simplified) form’

6 =1 +7Q (s, po(s51)) — QY (s,u)
9+ =0+ VGQw(Sv MQ(S))
Wy = w—|—5Vwa(SaU)

'David Silver et al. “Deterministic Policy Gradient Algorithms”.


https://hal.inria.fr/hal-00938992

| have been using simple function approximators.

Q" (s,u) = u'w +V"(s)
VO(s) = v"g(s)
po(s) = DMP + 676:(s)
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Deep Learning

Replace shallow function approximators @, V' and . with deep networks

Q" (s,u) = Deep network
V" (s) = Deep network
po(s) = DMP + Deep network



Efficient Exploration

Typical reinforcement learning frameworks employ more or less random exploration in order
to gain knowledge of the environment and optimize the policy.



http://graphics.stanford.edu/projects/gpspaper
https://homes.cs.washington.edu/~todorov/papers/TassaICRA14.pdf

Efficient Exploration

Typical reinforcement learning frameworks employ more or less random exploration in order
to gain knowledge of the environment and optimize the policy.

A notable exception is the Guided Policy Search (GPS) framework?, in which a local, linear
dynamics model is fit to recent data. A locally optimal linear control law is then calculated
using iterative LQG? given the model and a specified cost function.

2Sergey Levine and Vladlen Koltun. “Guided Policy Search”.

®Yuval Tassa, Nicolas Mansard, and Emo Todorov. “Control-limited differential dynamic programming”.


http://graphics.stanford.edu/projects/gpspaper
https://homes.cs.washington.edu/~todorov/papers/TassaICRA14.pdf

Efficient Exploration continued

In GPS, the global actor is trained to reproduce a collection of recent trajectories obtained
from executing the locally optimal linear controllers. As time progresses, the control law
represented by the actor converges to the collection of recent linear controllers. A similar
idea is being used here to accelerate learning through intelligent exploration.



