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Introduction

One-shot learning using DMP

Update DMP using reinforcement learning

Learn sensor-feedback controller with DMP as nominal controller



Introduction

We propose a framework for fast learning of robotic manipulation tasks that utilizes dynamic
movement primitives, learned from human demonstration, to learn a nominal controller from
a single demonstration.

An actor-critic framework is used to learn a nonlinear state and sensor feedback law, that
acts around the nominal DMP controller.

Fast learning with this model-free approach is achieved by the DMP controller making use
of the robot controllers internal dynamic model.

The off-policy characteristic of the proposed learning algorithm enables learning of the critic
already in the human demonstration phase.



Dynamic Movement Primitives

DMP equations

τ2q̈ = αz
(
βz (g − q)− τ q̇

)
+ fθ(x) (1)

τ ẋ = −αxx
fθ(x) = φ(x)Tθ



A DMP can be considered a state feedback law that maps the state to reference positions
and velocities S × X → S : µ(q, q̇, x).

To find a torque reference for the robot, the inverse model Eq. (2) may be used. This model
is typically not available and is, for a robot with many degrees of freedom, hard to estimate
from data.

τ = M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q̇) + J−T(q)fext (2)

The external force/torque wrench present in assembly scenarios is especially hard to model
in the presence of uncertainty and stiff environments.
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Deterministic Policy Gradient

From the Bellman equation

Q∗(s, u) = r + γQ∗(s+, µθ(s+))

we get the temporal difference error δ associated with approximating the value function Q
with Qw. The DPG update equations then take on the (simplified) form1

δ = r + γQw(s+, µθ(s+))−Qw(s, u)
θ+ = θ +∇θQw(s, µθ(s))
w+ = w + δ∇wQw(s, u)

1David Silver et al. “Deterministic Policy Gradient Algorithms”. In: ICML. Beijing, China, June 2014. URL:
https://hal.inria.fr/hal-00938992.

https://hal.inria.fr/hal-00938992


I have been using simple function approximators.

Qw(s, u) = uTw + V v(s)
V v(s) = vTφ(s)
µθ(s) = DMP + θTφ(s)
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Deep Learning

Replace shallow function approximators Q, V and µ with deep networks

Qw(s, u) = Deep network

V v(s) = Deep network

µθ(s) = DMP + Deep network



Efficient Exploration

Typical reinforcement learning frameworks employ more or less random exploration in order
to gain knowledge of the environment and optimize the policy.

A notable exception is the Guided Policy Search (GPS) framework2, in which a local, linear
dynamics model is fit to recent data. A locally optimal linear control law is then calculated
using iterative LQG3 given the model and a specified cost function.

2Sergey Levine and Vladlen Koltun. “Guided Policy Search”. In: ICML ’13: Proceedings of the 30th
International Conference on Machine Learning. http://graphics.stanford.edu/projects/gpspaper.
2013.

3Yuval Tassa, Nicolas Mansard, and Emo Todorov. “Control-limited differential dynamic programming”. In:
Robotics and Automation (ICRA), 2014 IEEE International Conference on.
https://homes.cs.washington.edu/~todorov/papers/TassaICRA14.pdf. IEEE. 2014,
pp. 1168–1175.

http://graphics.stanford.edu/projects/gpspaper
https://homes.cs.washington.edu/~todorov/papers/TassaICRA14.pdf


Efficient Exploration

Typical reinforcement learning frameworks employ more or less random exploration in order
to gain knowledge of the environment and optimize the policy.

A notable exception is the Guided Policy Search (GPS) framework2, in which a local, linear
dynamics model is fit to recent data. A locally optimal linear control law is then calculated
using iterative LQG3 given the model and a specified cost function.

2Sergey Levine and Vladlen Koltun. “Guided Policy Search”. In: ICML ’13: Proceedings of the 30th
International Conference on Machine Learning. http://graphics.stanford.edu/projects/gpspaper.
2013.

3Yuval Tassa, Nicolas Mansard, and Emo Todorov. “Control-limited differential dynamic programming”. In:
Robotics and Automation (ICRA), 2014 IEEE International Conference on.
https://homes.cs.washington.edu/~todorov/papers/TassaICRA14.pdf. IEEE. 2014,
pp. 1168–1175.

http://graphics.stanford.edu/projects/gpspaper
https://homes.cs.washington.edu/~todorov/papers/TassaICRA14.pdf


Efficient Exploration continued

In GPS, the global actor is trained to reproduce a collection of recent trajectories obtained
from executing the locally optimal linear controllers. As time progresses, the control law
represented by the actor converges to the collection of recent linear controllers. A similar
idea is being used here to accelerate learning through intelligent exploration.


