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Why am I interested

Tube MPC, Linear dynamics

I Assuming A, we guarantee B for all disturbances,

uncertainties and other issues captured by Ω.

Deep Learning Theory

I Assuming A, we can guarantee B for all disturbances,

uncertainties and other issues captured by our dataset.

I Nonconvex global optimization problem with large

number of parameters.

Pragmatic Deep Learning

I We did some sensible stu�, and we saw some sensible

results, so we are happy.
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MPC

I Reach a Goal

I Avoid obstacles

I Solve a sequence of open-loop control problems

I At each time-step: Observe, Plan, Execute �rst step
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Disturbances

I Consider disturbances or model uncertainties

I Future states cannot be known precisely

I Set of potential futures



Deep Learning
Tubes for Tube

MPC

Johan Gronqvist

Introduction

MPC

Tubes

Three Problems

Deep Learning

Summary

Many futures

I Planning a trajectory that avoids obstacles is not enough

I Need to plan with uncertainty

I Tube of futures

I Choose a control that yields a good tube.
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First attempt: MPC in open loop

I True state-space x

I A nominal model z+ = fz(z , u)

I Tube width model ω+ = fω(ω, z , u)

I u1, . . . , uN −→ (z1, ω1), . . . (zN , ωN)

I Assume |zk − xk | < ωk with high probability

I Ensure zk is at least a distance ωk away from any

obstacle.
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The previous picture is inaccurate

I Typically, uncertainty will grow over time

I Cautious control required, adaptinng to tube-growth

I We pretend that we need to plan an open-loop

controller for the remainder of the track
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The previous picture is inaccurate

I At each later time-step, we re-plan with perfect state

information

I This will prevent unbounded error growth
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The previous picture is inaccurate

I Our MPC setup did not know that, and was overly

cautious
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Reality

MPC at time t should be aware that there will be MPC

optimizers at each later stage with full state

information.
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Compromise

I Fix a tracking controller

I Use MPC to plan waypoints for the tracking controller

I Tube width bounded, due to tracking controller

I Good longer term planning with MPC
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MPC in closed loop

I Assume that a tracking controller is given

I At every timestep t

1. Perform full state measurement
2. Plan set of future waypoints for tracking controller
3. Take tubes into account
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Tube dynamics

I How quickly do tubes grow

I We previously assumed a model for this.

I Where does it come from?

I Why would we trust it?

I The linear case is simpler than the general case.

I Can we do better by learning from data?
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Error dynamics

I Tubes were centered around nominal model's

trajectories.

I Nominal model could have systematic errors.

I Can we learn those from data?

I Train a network for e+ = fe(e, z+, z)

I Use tube of radius ω around z + e
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Nominal Model

I Where did we get our nominal model?

I Why do we think it is a good one?

I Can we learn a better one from data?
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Nonlinear function approximation

I Deep Learning provides
I Parametrizations of nonlinear functions
I Optimization procedures for �tting parameters to data
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Tube width dynamics

I We want to parametrize a function fω such that

ωt+1 = fω(ωt , zt , vt)

I Quantile loss
I Prob[ω+ > fω(ω, z , v)] = α
I (Assuming that our network was perfectly trained on

our perfect dataset.)
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Epistemic uncertainty

I Our dataset is not perfect, unfortunately

I Need to quantify to what extent new data is "new"

I Train a Projector P to project away dataset.

I Anything that remains is new data
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Monotonicity

I Additional loss term

I Ensure fω(ω + ε, z , u) ≥ fω(ω, z , u)



Deep Learning
Tubes for Tube

MPC

Johan Gronqvist

Introduction

MPC

Tubes

Three Problems

Deep Learning

Summary

Error dynamics

I System xt+1 = fx(xt , ut)

I Tracking Controller ut(zt+1, xt)

I Nominal Model zt+1 = fz(zt , vt)

I Learn systematic errors, et = zt − xt
I Ansats et+1 = fe(et , zt , vt)

I Train a neural network
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Nominal model

I Unknown system xt+1 = fx(xt , ut)

I Tracking controller ut(zt+1, xt)

I Assume we do not have a good approximate model for z .

I Learn a model of fx and use that as the approximate

model.
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It works, sometimes, maybe

I In a simple world there are guarantees

I In a complex world, Deep Learning can be useful

I Taming Deep Learning is about taking a well understood

method, and adding a little deep learning at a time.

I In a controlled way.
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The End
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