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Pauline Kergus - Karl Johan Åström Control System Synthesis 09/09/2020 2/30



Introduction to
data-driven control
The importance of data-driven
approaches

Model-based and data-driven
control

Overview of data-driven control
technique

Predictive and
learning DDC
Use of local models

Use of repetitive experiments

Robust DDC
Using convex optimization

Using non-convex optimization

Model reference DDC
Structured controller

Unstructured controller

Conclusion

Content overview

1 Introduction to data-driven control
The importance of data-driven approaches
Model-based and data-driven control
Overview of data-driven control technique

2 Predictive and learning DDC
Use of local models
Use of repetitive experiments

3 Robust DDC
Using convex optimization
Using non-convex optimization

4 Model reference DDC
Structured controller
Unstructured controller

5 Conclusion
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Introduction to data-driven control
The importance of data-driven approaches

“Modern” control theory requires a description of the system and of the
disturbances

→ simply not available in some practical problems

→ Motivating example: large-scale industrial processes

Identification→ research in this area since the 1960s

Autotuning

Ziegler-Nichols formulas for PIDs

PID autotuning (Karl Johan and Tore)
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Introduction to data-driven control
Model-based and data-driven control

Data-Driven Control (DDC)Model-Based Control (MBC)

Model identification / reduction

Data

Controller
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Introduction to data-driven control
Model-based and data-driven control

Accurate model Uncertain model
Complicated model

(high-order, NL)

Model-Based Control (MBC) Data-Driven Control (DDC)

Identification and/or Reduction

No model
(unavailable, hard to obtain)
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Introduction to data-driven control
Model-based and data-driven control

What are good data? (experiment design)

About MBC
When is a model ”too hard to obtain”?

What is a good model?

What is the relation between identification and control?

→ stakes of the application

→ purpose of the model

→ accuracy vs complexity trade-off

About DDC
How does DDC handle uncertainty and complexity?

To what extent a DDC technique is model-free?
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Introduction to data-driven control
Model-based and data-driven control

”Control theory makes no claims about the performance or stability of physical
systems; only about their models.”

”[Model-based control] starts and ends with the model. To some extent, it may
be called model theory rather than control theory.”

1 Controller validation, Brozenec, T. F., Tsao, T. C., Safonov, M. G. (2001), in International Journal of
Adaptive Control and Signal Processing.

2 From model-based control to data-driven control: Survey, classification and perspective, Hou, Z. S.,
Wang, Z. (2013), in Information Sciences.
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Data-driven control

Predictive and
learning DDC

Update local models

Use of repetitive
experiments

Robust DDC

‖W1S‖∞ ≤ 1
‖W2KS‖∞ ≤ 1

Model-reference DDC

min
K

∥∥(1 + PK)−1PK−M
∥∥

Other classifications:

Online/offline data

Controller structure

System knowledge
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Predictive and learning DDC
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PlantController

Estimator
Controller

Design

Specifications

Local model
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Predictive and learning DDC
Use of local models

Self-Tuning Regulators (STR)

Step 1: Least squares parameter
estimation

y(t) +
∑m

i=1 αiy(t − k − i)

= β0

(
u(t − k − 1) +

∑l
i=1 βiu(t − k − i − 1)

)
Step 2: Control

u(t) = z l−m+1α(z)
β(z) y(t)

Model-Free Control or iPIDs

Step 1: Ultra local estimation

y (ν) = F + αu

Step 2: Control

u = −F − y (ν) + C(z)e
α

1 On self tuning regulators, Åström, K. J., Wittenmark, B. (1973), in Automatica.

2 Model-free control, Fliess, M., Join, C. (2013), in International Journal of Control.
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Predictive and learning DDC
Data-driven MPC

Plant

SubspaceMPC
Controller

Local model

min J
s.t. model
constraints

Subspace approach

Prediction model:{
xt+1=Axt + But

yt =Cxt + Dut

Subspace id: Find (A,B,C,D) from
IO data {ut}N

t=1 and {yt}N
t=1

1 Dynamic modeling, predictive control and performance monitoring: a data-driven subspace approach,
Huang, B., Kadali, R. (2008), Springer.
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Predictive and learning DDC
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Subspace algorithm

1 Build data matrices Y and U from the data

Y = OnX + ΓU

2 Project to estimate the rank space of On

YU⊥ = OnXU⊥

3 Get the matrices A and C

4 Get the matrices B and D from the data (least squares)

Pauline Kergus - Karl Johan Åström Control System Synthesis 09/09/2020 14/30



Introduction to
data-driven control
The importance of data-driven
approaches

Model-based and data-driven
control

Overview of data-driven control
technique

Predictive and
learning DDC
Use of local models

Use of repetitive experiments

Robust DDC
Using convex optimization

Using non-convex optimization

Model reference DDC
Structured controller

Unstructured controller

Conclusion

Predictive and learning DDC
Use of local models

Subspace algorithm

1 Build data matrices Y and U from the data

Y = OnX + ΓU

2 Project to estimate the rank space of On

YU⊥ = OnXU⊥

3 Get the matrices A and C

4 Get the matrices B and D from the data (least squares)
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Predictive and learning DDC
Use of local models

Many other ways to update a local model from data

Plant

Machine
Learning

MPC
Controller

Local model

min J
s.t. model
constraints

Learning-based model predictive control: Toward safe learning in control, Hewing, L., Wabersich, K. P.,
Menner, M., Zeilinger, M. N. in Annual Review of Control, Robotics, and Autonomous Systems, 2020.
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Iterative Learning Control

Plant

ILC

MemoryNext experiment

yk −→
k→∞

y ref

uk+1(z) = uk (z)+L(z)(y ref (z)−yk (z))

ek+1(z) = (1− P(z)L(z))ek (z)

A survey of iterative learning control: A learning-based method for high-performance tracking control, D.
Bristow, M. Tharayil, and A. Alleyne, 2006, in IEEE Control Systems Magazine.

Iterative learning control: Analysis, design, and experiments, M. Norrlof, Ph.D. dissertation, University of
Linkoping, 2000.
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Reinforcement learning

Markov Decision process

set of environment and agent states

set of actions of the agent

probability of transition at time t from
state s to state s′ under action a

reward after transition from s to s′

under action a

→ Objective: learn a policy which
maximizes the expected cumulative
reward

comparison with an optimal agent→ regret

Applications: robotics, flight dynamics, multi-agents, planning (model-based)
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Reinforcement learning

Data-driven case: the only way to collect information about the environment
is to interact with it

Exploration vs Exploitation
A data-driven technique: Q-learning

1 Q(s, a) is a cost function, initialized by the user
2 The action to take is given by π(s) = max

a
Qi (s, a)

3 Q is updated at each step s −→
a

s′ giving reward r

Qi+1(s, a) = (1− α)Qi (s, a) + α

(
r + γmax

a′
Qi (s′, a′)

)

α is the learning rate
γ is the discount factor (importance of future reward)
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Pauline Kergus - Karl Johan Åström Control System Synthesis 09/09/2020 18/30



Introduction to
data-driven control
The importance of data-driven
approaches

Model-based and data-driven
control

Overview of data-driven control
technique

Predictive and
learning DDC
Use of local models

Use of repetitive experiments

Robust DDC
Using convex optimization

Using non-convex optimization

Model reference DDC
Structured controller

Unstructured controller

Conclusion

Predictive and learning DDC
Use of repetitive experiments

Reinforcement learning

Data-driven case: the only way to collect information about the environment
is to interact with it

Exploration vs Exploitation
A data-driven technique: Q-learning
1 Q(s, a) is a cost function, initialized by the user
2 The action to take is given by π(s) = max

a
Qi (s, a)

3 Q is updated at each step s −→
a

s′ giving reward r

Qi+1(s, a) = (1− α)Qi (s, a) + α

(
r + γmax

a′
Qi (s′, a′)

)

α is the learning rate
γ is the discount factor (importance of future reward)
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1 Q(s, a) is a cost function, initialized by the user
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s′ giving reward r

Qi+1(s, a) = (1− α)Qi (s, a) + α

(
r + γmax

a′
Qi (s′, a′)

)
α is the learning rate

γ is the discount factor (importance of future reward)

→ α = 0→ learn nothing, exploitation
→ α = 1→ ignore prior knowledge, only exploration
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→ γ = 0→ short-term
→ γ = 1→ long-term
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Robust DDC
Using convex optimization

{G(ωi)(1 + Wi(ωi)∆), i = 1 . . .m}

Classical robust requirement:
‖|W1S|+ |W2T |‖∞ < 1

Data-driven version:
‖|W1(ω)S(ω)|+ |W2(ω)T (ω)|‖∞ < 1

Constraints on the Nyquist plot:
‖|W1(ω)|+ |W2(ω)L(ρ, ω)|‖∞ <
|1 + L(ρ, ω)|

→ requires a desirable open-loop Ld ≈ L(ρ)

→ for SISO systems only

→ can be solved with convex optimisation

K (s, ρ) = ρφ(s)

Fixed-orderH∞ controller design for nonparametric models by convex optimization, Karimi, A., Galdos,
G. (2010) in Automatica.
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Pauline Kergus - Karl Johan Åström Control System Synthesis 09/09/2020 20/30



Introduction to
data-driven control
The importance of data-driven
approaches

Model-based and data-driven
control

Overview of data-driven control
technique

Predictive and
learning DDC
Use of local models

Use of repetitive experiments

Robust DDC
Using convex optimization

Using non-convex optimization

Model reference DDC
Structured controller

Unstructured controller

Conclusion

Robust DDC
Using convex optimization

{G(ωi)(1 + Wi(ωi)∆), i = 1 . . .m}

Classical robust requirement:
‖|W1S|+ |W2T |‖∞ < 1

Data-driven version:
‖|W1(ω)S(ω)|+ |W2(ω)T (ω)|‖∞ < 1

Constraints on the Nyquist plot:
‖|W1(ω)|+ |W2(ω)L(ρ, ω)|‖∞ <
|1 + L(ρ, ω)|

→ requires a desirable open-loop Ld ≈ L(ρ)

→ for SISO systems only

→ can be solved with convex optimisation

K (s, ρ) = ρφ(s)

Fixed-orderH∞ controller design for nonparametric models by convex optimization, Karimi, A., Galdos,
G. (2010) in Automatica.

Pauline Kergus - Karl Johan Åström Control System Synthesis 09/09/2020 20/30



Introduction to
data-driven control
The importance of data-driven
approaches

Model-based and data-driven
control

Overview of data-driven control
technique

Predictive and
learning DDC
Use of local models

Use of repetitive experiments

Robust DDC
Using convex optimization

Using non-convex optimization

Model reference DDC
Structured controller

Unstructured controller

Conclusion

Robust DDC
Using non-convex optimization

minimize max
i=1...N

σ(Tzw (ωi))

subject to K ∈ K stabilizing

1 Initialization with a stabilizing
controller

2 Find a polyhedral model

3 Primary descent (trust-region)

4 Nyquist stability test

→ satisfied: iterate

→ not satisfied: redo the descent with a
smaller trust radius

StructuredH∞-control of infinite-dimensional systems, Apkarian, P., Noll, D. (2018) in International
Journal of Robust and Nonlinear Control.
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Model reference DDC
Structured controller

min
θ

J(θ) =

∥∥∥∥ P(z)K(z, θ)

1 + P(z)K(z, θ)
−M(z)

∥∥∥∥2

2

Pauline Kergus - Karl Johan Åström Control System Synthesis 09/09/2020 23/30



Introduction to
data-driven control
The importance of data-driven
approaches

Model-based and data-driven
control

Overview of data-driven control
technique

Predictive and
learning DDC
Use of local models

Use of repetitive experiments

Robust DDC
Using convex optimization

Using non-convex optimization

Model reference DDC
Structured controller

Unstructured controller

Conclusion

Model reference DDC
Structured controller

min
θ

J(θ) =

∥∥∥∥ P(z)K(z, θ)

1 + P(z)K(z, θ)
−M(z)

∥∥∥∥2

2

VRFT

JN
VRFT (θ) =

1
N

N∑
k=1

(uF (tk )− K(z, θ)e?F (tk ))2

M−1

K P
+ −

r? e? u y

Virtual reference feedback tuning: a direct method for the design of feedback controllers, Campi, M. C.,
Lecchini, A., Savaresi, S. M. (2002) in Automatica.
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M
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+

−
+

−

+ +

r

e u y

yd

ε

w

ε(s) =

(
M(s)− P(s)K(θ, s)

1 + P(s)K(θ, s)

)
r(s) +

1
1 + P(s)K(θ, s)

w(s)

Correlation-based tuning of decoupling multivariable controllers, Mišković, L., Karimi, A., Bonvin, D.,
Gevers, M. (2007) in Automatica.
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∂ε(θ)

∂θ
=

1
K(θ)

∂K(θ)

∂θ

(
PK(θ)

1 + PK(θ)
(r − y(θ))

)
Correlation-based tuning of decoupling multivariable controllers, Mišković, L., Karimi, A., Bonvin, D.,
Gevers, M. (2007) in Automatica.
Iterative feedback tuning: an overview, Hjalmarsson, H. (2002) in International journal of adaptive control
and signal processing.
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Key assumptions:

The ideal controller K ? belongs to the chosen class K of controllers

The reference model is achievable by the plant

M(z) = 0

M(p) = 1

Hard to meet in a data-driven framework
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Model reference DDC
Unstructured controller

θ1

θ2

θ3

→ 200 points logarithmically spaced between
1 and 103rad.s−1

M(s) =
1

1
ω2

0
s2 + 2ξ

ω0
s + 1

ω0 = 10rad.s−1, ξ = 1
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(a) Controller identification
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(b) Resulting closed-loops
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Step 1: Determine the plant’s limitations from its data

P = Ps + Pas
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Step 2: Controller identification
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Figure: Singular Value Decomposition of the
Loewner matrix to determine the McMillan
order.

100 101 102 103
-50

-40

-30

-20

-10

0

10

Figure: Projection on RH∞ to enforce stability
of K.
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Step 3: Controller reduction under stability constraint
Application of the small-gain theorem

K?

K− K?

P
+ − +

+

Achievable reference model Mf

Uncertainty

The resulting closed-loop is
well-posed and internally stable for all
stable ∆ such that ‖∆‖∞ ≤ β if and
only if ‖(1−Mf )P‖∞ < 1

β .

→ Limiting the controller modelling
error allows to ensure closed-loop
internal stability!
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Pauline Kergus - Karl Johan Åström Control System Synthesis 09/09/2020 27/30



Introduction to
data-driven control
The importance of data-driven
approaches

Model-based and data-driven
control

Overview of data-driven control
technique

Predictive and
learning DDC
Use of local models

Use of repetitive experiments

Robust DDC
Using convex optimization

Using non-convex optimization

Model reference DDC
Structured controller

Unstructured controller

Conclusion

Model reference DDC
Unstructured controller

Taking a slower reference model: ω0 = 5rad.s−1 (ω0 = 10rad.s−1 until now)

M2(s) = 1
0.04s2+0.4s+1 Mf 2 = M2Bz β = 0.0609
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Figure: Evolution of the controller
modelling error for relaxed specifications.
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Figure: Time-domain simulation.
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Knowledge of the plant

Predictive and learning DDC generates a lot of knowledge about the system
Robust DDC and model reference DDC requires some insight about the system
(achievable specifications or initial stabilizing controller)

Controller structure may be hard to choose when needed

Online or offline

Different objective formulations
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Things we have not talked about

Control of and over networks

Autonomous systems (cars, robots)

Interplay between computing and control

Tackling complexity (size, interactions, nonlinearities,...)

Going towards other areas (biology, medicine, economics, social sciences)

Much more to do with learning

→ Theory and applications are strongly linked!

Don’t forget the bigger picture!
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