

Control System Synthesis - Robust control PHD CLASS - FALL 2020

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_∞ -synthesis \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

1 Introduction

- 2 Fundamentals
- 3 Design techniques
 - PID control
 - Optimal control and LQG

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

1 Introduction

- 2 Fundamentals
- 3 Design techniques
 - PID control
 - Optimal control and LQG
 - Robust control and Hinf synthesis
 - Model Predictive Control
 - Adaptive Control
 - Data-driven Control

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis \mathcal{H}_{\circ} analysis and synthesis

Content overview

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorer
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_∞ -synthesis \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

2 Robust synthesis

- \mathcal{H}_{∞} -synthesis
- **\blacksquare** \mathcal{H}_{∞} -Loopshaping synthesis
- μ -analysis and synthesis

- Where does uncertainty come from?
- Modelling unce
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_∞ -synthesis \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

Uncertainty and robustness

Where does uncertainty come from?

A model is only an approximation of the reality!

Complex dynamics

- Where does uncertainty come from?
- Modelling uncert
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Uncertainty and robustness

Where does uncertainty come from?

A model is only an approximation of the reality!

- Complex dynamics
- Uncertain inputs

- Where does uncertainty come from?
- Modelling uncer
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Uncertainty and robustness

Where does uncertainty come from?

A model is only an approximation of the reality!

- Complex dynamics
- Uncertain inputs
- Simplified models

Uncertainty and

- Where does uncertainty come from?

- Small gain theorem

 \mathcal{H}_{∞} -synthesis

Uncertainty and robustness

Where does uncertainty come from?

A model is only an approximation of the reality!

- Complex dynamics
- Uncertain inputs
- Simplified models
- Process variations

Control System Synthesis

Uncertainty and

- Where does uncertainty come from?

 \mathcal{H}_{∞} -synthesis

Uncertainty and robustness

Where does uncertainty come from?

A model is only an approximation of the reality!

- Complex dynamics
- Uncertain inputs
- Simplified models
- Process variations

The controller is tailored for the model

- Is your controller good enough for the real system? \rightarrow **analysis**
- Can you take into account the uncertainties during the design? \rightarrow synthesis

LUND UNIVERSITY

Uncertainty and robustness

Modelling uncertainty

Uncertainty and robustness

Where does uncertainty come from?

Modelling uncertainty

- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_∞ -synthesis \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

How to handle uncertainty?

Classical margins requirements

- Gain margin $g_m > 5$ dB
- Phase margin $\varphi_m > 45^\circ$

Modelling uncertainty

Uncertainty and robustness

Where does uncertainty come from?

Modelling uncertainty

- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Limitations of classical margins

Modelling uncertainty

Uncertainty and robustness

Where does uncertainty come from?

Modelling uncertainty

- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Limitations of classical margins

Uncertainty and robustness Modelling uncertainty

Uncertainty and robustness

Where does uncertainty come from?

Modelling uncertainty

Robustness

Small gain theorem

Robust stability

Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Less structured representations of uncertainty

 \rightarrow set of transfer functions around the nominal model

Modelling uncertainty

Uncertainty and robustness

Where does uncertainty come from?

Modelling uncertainty

Robustness

Small gain theorem

Robust stability

Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Less structured representations of uncertainty

 \rightarrow set of transfer functions around the nominal model

Additive uncertainty

$$P_{\Delta}(s) = P(s) + W_1(s)\Delta(s)W_2(s), \ \forall \omega > 0 \ \overline{\sigma}(\Delta(\jmath \omega)) < 1$$

 W_1 and W_2 : spatial and frequency structure of the uncertainty

Pauline Kergus - Karl Johan Åström

09/09/2020 8/31

Modelling uncertainty

Uncertainty and robustness

Where does uncertainty come from?

Modelling uncertainty

Robustness

Small gain theorem

Robust stability

Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Less structured representations of uncertainty

 \rightarrow set of transfer functions around the nominal model

Multiplicative uncertainty

 $P_{\Delta}(s) = (I + W_1(s)\Delta(s)W_2(s))P(s), \ \forall \omega > 0 \ \overline{\sigma}(\Delta(\jmath \omega)) < 1$

Pauline Kergus - Karl Johan Åström

Robustness

Uncertainty and robustness

Where does uncertainty come from? Modelling uncertainty

Robustness

Small gain theorem Robust stability Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Definition of robustness

Robustness

Uncertainty and robustness

Where does uncertainty come from? Modelling uncertainty

Robustness

- Small gain theorem Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_∞ -synthesis \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

Definition of robustness

- Nominal stability: $S = (I + PC)^1$ stable
- Nominal performance: $\overline{\sigma}(S) \leq 1/|W_p|$

Robustness

Uncertainty and robustness

Where does uncertainty come from? Modelling uncertainty

Robustness

Small gain theorem Robust stability

Robust synthesis

 \mathcal{H}_∞ -synthesis \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

Definition of robustness

- Nominal stability: $S = (I + PC)^1$ stable
- Nominal performance: $\overline{\sigma}(S) \leq 1/|W_p|$
- Robust stability: $S_{\delta} = (I + P_{\delta}C)^1$ stable, $\forall P_{\delta} \in \mathcal{P}$

Robustness

Uncertainty and robustness

Where does uncertainty come from? Modelling uncertainty

Robustness

Small gain theorem Robust stability

Robust synthesis

- \mathcal{H}_∞ -synthesis \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis
- Nominal stability: $S = (I + PC)^1$ stable
- Nominal performance: $\overline{\sigma}(S) \leq 1/|W_p|$
- Robust stability: $S_{\delta} = (I + P_{\delta}C)^1$ stable, $\forall P_{\delta} \in P$
- Robust performance: $\overline{\sigma}(\mathcal{S}_{\delta}) \leq 1/|W\!p|, \forall P_{\delta} \in \mathcal{P}$

and model uncertainty

Definition of robustness

Ability to meet requirements (stability and performances) under disturbance

Pauline Kergus - Karl Johan Åström

Control System Synthesis

09/09/2020 9/31

Uncertainty and robustness

Robustness

Uncertainty and robustness

Where does uncertainty come from? Modelling uncertainty

Robustness

Small gain theorem Robust stability Robust performance

Robust synthesis

- \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis
- Nominal stability: $S = (I + PC)^1$ stable
- Nominal performance: $\overline{\sigma}(S) \leq 1/|W_p|$
- Robust stability: $S_{\delta} = (I + P_{\delta}C)^1$ stable, $\forall P_{\delta} \in \mathcal{P}$
- Robust performance: $\overline{\sigma}(\mathcal{S}_{\delta}) \leq 1/|\mathit{Wp}|, \forall \mathit{P}_{\delta} \in \mathcal{P}$

How to analyze/enforce robust stability and performance?

Definition of robustness

Small gain theorem

Uncertainty and robustness

- Where does uncertainty come from? Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Small-gain theorem

Suppose $M \in \mathcal{RH}_{\infty}$ and let $\gamma > 0$. Then this interconnected system is well-posed and internally stable for all $\Delta(s) \in \mathcal{RH}_{\infty}$ with:

$$\| \Delta \|_{\infty} \leq rac{1}{\gamma}$$
 if and only if $\| M \|_{\infty} < \gamma$

 $\blacksquare \ \|\Delta\|_{\infty} < \frac{1}{\gamma} \text{ if and only if } \|M\|_{\infty} \le \gamma$

Pauline Kergus - Karl Johan Åström

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

$$P_{\Delta}(s) = P(s) + W_1(s)\Delta(s)W_2(s), \ orall \omega > 0 \ \overline{\sigma}(\Delta(\jmath\omega)) < 1$$

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

$$P_{\Delta}(s) = P(s) + W_1(s)\Delta(s)W_2(s), \ \forall \omega > 0 \ \overline{\sigma}(\Delta(\jmath \omega)) < 1$$

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

$$extsf{P}_{\Delta}(s) = extsf{P}(s) + extsf{W}_1(s)\Delta(s) extsf{W}_2(s), \ orall \omega > 0 \ \overline{\sigma}(\Delta(\jmath\omega)) < 1$$

The closed-loop is internally stable for $\Delta \in \mathcal{RH}_{\infty}$ such that $\|\Delta\|_{\infty} < 1$ if and only if $\|M\|_{\infty} \leq 1$

$$M = W_2 K (I + KP)^{-1} W_1$$

Pauline Kergus - Karl Johan Åström

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

$$P_{\Delta}(s) = (I + W_1(s)\Delta(s)W_2(s))P(s), \ \forall \omega > 0 \ \overline{\sigma}(\Delta(\jmath \omega)) < 1$$

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

 $extsf{P}_{\Delta}(s) = (I + W_1(s)\Delta(s)W_2(s)) extsf{P}(s), \ orall \omega > 0 \ \overline{\sigma}(\Delta(\jmath \omega)) < 1$

The closed-loop is internally stable for $\Delta \in \mathcal{RH}_{\infty}$ such that $\|\Delta\|_{\infty} < 1$ if and only if $\|M\|_{\infty} \leq 1$

$$M = W_2 K P (I + P K)^{-1} W_1$$

Pauline Kergus - Karl Johan Åström

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

$W_1 \in \mathcal{RH}_{\infty} \ W_2 \in \mathcal{RH}_{\infty} \ \Delta \in \mathcal{RH}_{\infty} \ \ \Delta\ _{\infty} < 1$		
Perturbed Model Sets	Representative Types of Uncertainty Characterized	Robust Stability Tests
$(I+W_1\Delta W_2)P$	output (sensor) errors neglected HF dynamics uncertain rhp zeros	$\left\ W_2T_oW_1\right\ _\infty\leq 1$
$P(I + W_1 \Delta W_2)$	input (actuators) errors neglected HF dynamics uncertain rhp zeros	$\ W_2T_iW_1\ _\infty \leq 1$
$(I+W_1\Delta W_2)^{-1}P$	LF parameter errors uncertain rhp poles	$\left\ W_2S_oW_1\right\ _\infty\leq 1$
$P(I + W_1 \Delta W_2)^{-1}$	LF parameter errors uncertain rhp poles	$\ W_2S_iW_1\ _\infty \leq 1$
$P + W_1 \Delta W_2$	additive plant errors neglected HF dynamics uncertain rhp zeros	$\left\ W_2KS_oW_1\right\ _{\infty} \leq 1$
$P(I+W_1\Delta W_2P)^{-1}$	LF parameter errors uncertain rhp poles	$\left\ W_2S_oPW_1\right\ _\infty \leq 1$
$(\tilde{M} + \tilde{\Delta}_M)^{-1}(\tilde{N} + \tilde{\Delta}_N)$ $P = \tilde{M}^{-1}\tilde{N}$ $\Delta = \begin{bmatrix} \tilde{\Delta}_N & \tilde{\Delta}_M \end{bmatrix}$	LF parameter errors neglected HF dynamics uncertain rhp poles & zeros	$\left\ \begin{bmatrix} K \\ I \end{bmatrix} S_o \tilde{M}^{-1} \right\ _{\infty} \leq 1$
$ \begin{array}{c} (N + \Delta_N)(M + \Delta_M)^{-1} \\ P = NM^{-1} \\ \Delta = \begin{bmatrix} \Delta_N \\ \Delta_M \end{bmatrix} \end{array} $	LF parameter errors neglected HF dynamics uncertain rhp poles & zeros	$\left\ M^{-1}S_i[K\ I]\right\ _\infty \leq 1$

Essentials of robust control Zhou, K., Doyle, J. C. (1998).

Table 8.1: Unstructured robust stability tests (HF: high frequency, LF: low frequency)

Pauline Kergus - Karl Johan Åström

Robust performance

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

robust stability and $\sup_{\|\tilde{\delta}\|_2 \leq 1} \|\boldsymbol{e}\|_2 \leq 1$

Pauline Kergus - Karl Johan Åström

Robust performance

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

robust stability and $\|T_{\tilde{\delta}e}\|_{\infty} \leq 1, \ \forall \Delta \in \mathcal{RH}_{\infty}, \|\Delta\|_{\infty} < 1$ $T_{\tilde{\delta}e} = W_{e}(I + P_{\Delta}K)^{-1}W_{d} \text{ with } P_{\Delta} \in \Pi$

Pauline Kergus - Karl Johan Åström

Uncertainty and robustness Robust performance

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Sufficient condition in the case of multiplicative uncertainty:

$$orall \omega, \ \overline{\sigma}(W_d)\overline{\sigma}(W_eS) + \overline{\sigma}(W_1)\overline{\sigma}(W_2T) \le 1$$

 $S = (I + KP)^{-1}, \ T = I - S$

Pauline Kergus - Karl Johan Åström

Uncertainty and robustness Summary

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Uncertainty and robustness Summary

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

- Requires to represent uncertainty
 - Margins

Uncertainty and robustness _{Summary}

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theore
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

- Requires to represent uncertainty
 - Margins
 - Model set for the system's transfer function

Uncertainty and robustness Summary

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theore
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

The goal of robust control is to address uncertainty

- Requires to represent uncertainty
 - Margins
 - Model set for the system's transfer function
- Small-gain theorem ightarrow Robust stability test

Uncertainty and robustness Summary

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theore
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

- Requires to represent uncertainty
 - Margins
 - Model set for the system's transfer function
- Small-gain theorem ightarrow Robust stability test
- Additional sufficient conditions for robust performance
Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Jncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

2 Robust synthesis

- $\blacksquare \ \mathcal{H}_\infty\text{-synthesis}$
- **\blacksquare** \mathcal{H}_{∞} -Loopshaping synthesis
- μ -analysis and synthesis

Robust synthesis \mathcal{H}_{∞} -synthesis

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

\mathcal{H}_∞ -synthesis

 \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

Optimal \mathcal{H}_{∞} **Control**: Find all admissible controllers K(s) such that $||T_{z\omega}||_{\infty}$ is minimized.

Robust synthesis \mathcal{H}_{∞} -synthesis

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

\mathcal{H}_∞ -synthesis

 \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

- Optimal \mathcal{H}_{∞} Control: Find all admissible controllers K(s) such that $||T_{z\omega}||_{\infty}$ is minimized.
- Suboptimal H_∞ Control: Given γ > 0, find all admissible controllers K(s) such that ||T_{zω}||_∞ < γ.</p>

$\mathcal{H}_\infty ext{-synthesis}$

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

\mathcal{H}_∞ -synthesis

 \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

- Tracking
- Disturbance rejection
- Measurement noise
- Moderate command signal

$\mathcal{H}_\infty ext{-synthesis}$

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

\mathcal{H}_∞ -synthesis

 \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

Tracking

- Disturbance rejection
- Measurement noise
- Moderate command signal

Pauline Kergus - Karl Johan Åström

 \Rightarrow regulated variables = T(external signals)

$\mathcal{H}_\infty ext{-synthesis}$

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

\mathcal{H}_∞ -synthesis

 \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

- Tracking
- Disturbance rejection
- Measurement noise
- Moderate command signal

⇒ regulated variables = T(external signals)
Performance as Generalized Disturbance
Rejection

Pauline Kergus - Karl Johan Åström

 $\mathcal{H}_{\infty} ext{-synthesis}$

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

\mathcal{H}_∞ -synthesis

 \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

Generalized and Weighted Performance Block Diagram

Use of weights to handle magnitudes and frequency dependency

Pauline Kergus - Karl Johan Åström

Robust synthesis \mathcal{H}_{∞} -synthesis

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

\mathcal{H}_∞ -synthesis

 \mathcal{H}_∞ -Loopshaping synthesis $\mu\text{-analysis}$ and synthesis

Resolution

 Matlab Robust control toolbox: K,CL,gamma= hinfsyn(P,nmeas,ncont,gam)

Robust synthesis \mathcal{H}_{∞} -synthesis

w

u

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

\mathcal{H}_∞ -synthesis

 \mathcal{H}_∞ -Loopshaping synthesis $\mu\text{-analysis}$ and synthesis

Resolution

- Matlab Robust control toolbox:
 K,CL,gamma= hinfsyn(P,nmeas,ncont,gam)
 Bioosti
 - Riccati

G

K

z

y

 \mathcal{H}_{∞} -synthesis

Uncertainty and

- Where does uncertainty come from?

- Small gain theorem

\mathcal{H}_∞ -synthesis

 ${\cal H}_\infty$ -Loopshaping synthesis

zwGyuK

Resolution

- Matlab Robust control toolbox: K,CL,gamma= hinfsyn(P,nmeas,ncont,gam)
 - Riccati
 - LMIs

Robust synthesis $\mathcal{U}_{\mathcal{U}}$ synthesis

 $\mathcal{H}_\infty ext{-synthesis}$

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

\mathcal{H}_∞ -synthesis

 \mathcal{H}_∞ -Loopshaping synthes μ -analysis and synthesis

Resolution

- Matlab Robust control toolbox: K,CL,gamma= hinfsyn(P,nmeas,ncont,gam)
 - Riccati
 - LMIs

K has the same order than P + centralized structure

 $\mathcal{H}_\infty ext{-synthesis}$

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

\mathcal{H}_∞ -synthesis

 \mathcal{H}_∞ -Loopshaping synthes μ -analysis and synthesis

z w G u w u k u

Resolution

- Matlab Robust control toolbox: K,CL,gamma= hinfsyn(P,nmeas,ncont,gam)
 - Riccati
 - LMIs
- K has the same order than P + centralized structure
- structured version with hinfstruct

 $\mathcal{H}_\infty ext{-synthesis}$

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

\mathcal{H}_∞ -synthesis

 \mathcal{H}_∞ -Loopshaping synthes μ -analysis and synthesis

z w G u u w u w u u

Resolution

- Matlab Robust control toolbox: K,CL,gamma= hinfsyn(P,nmeas,ncont,gam)
 - Riccati
 - LMIs
- K has the same order than P + centralized structure
- structured version with hinfstruct
- → Controller reduction

w

u

 $\mathcal{H}_{\infty} ext{-synthesis}$

z

y

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

\mathcal{H}_∞ -synthesis

 \mathcal{H}_∞ -Loopshaping synthesi μ -analysis and synthesis

Resolution

- Matlab Robust control toolbox: K,CL,gamma= hinfsyn(P,nmeas,ncont,gam)
 - Riccati
 - LMIs
- K has the same order than P + centralized structure
- structured version with hinfstruct
- → Controller reduction
- Difficulty to tune the weights

G

K

 $\mathcal{H}_{\infty} ext{-synthesis}$

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

\mathcal{H}_∞ -synthesis

 \mathcal{H}_∞ -Loopshaping synthesi μ -analysis and synthesis

z w G u y k u

Resolution

- Matlab Robust control toolbox: K,CL,gamma= hinfsyn(P,nmeas,ncont,gam)
 - Riccati
 - LMIs
- K has the same order than P + centralized structure
- structured version with hinfstruct
- → Controller reduction
- Difficulty to tune the weights
- → Use systume : Specify only high-level design requirements (reference tracking, overshoot, disturbance rejection, or open-loop stability margins)

Pauline Kergus - Karl Johan Åström

Control System Synthesis

09/09/2020 21/31

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

\mathcal{H}_∞ -synthesis

 \mathcal{H}_∞ -Loopshaping synthesi μ -analysis and synthesis

Further reading

Riccati approach

Robust synthesis

- Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis. *State-space solutions to standard* H₂ and H_∞ control problems. IEEE Transactions on Automatic Control, 1989.
- 2 LMI approach

 \mathcal{H}_{∞} -synthesis

- Gahinet, P., and P. Apkarian. *A linear matrix inequality approach to* H_∞*-control.* International Journal of Robust and Nonlinear Control, 1994.
- **3** Structured \mathcal{H}_{∞} -controller design
 - P. Apkarian and D. Noll, *Nonsmooth H-infinity Synthesis*, IEEE Transactions on Automatic Control, 2006.

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

\mathcal{H}_∞ -synthesis

 \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

Robust synthesis \mathcal{H}_{∞} -synthesis

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

\mathcal{H}_∞ -synthesis

 \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

Robustness in the \mathcal{H}_∞ framework

- Keep $T_{z_1\omega_1}$ and $T_{z_2\omega_2}$ small
- Robustness objectives = additional "disturbance to error" transfer functions to be kept small

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_∞ -synthesis \mathcal{H}_∞ -Loopshaping synthesis

1 Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

2 Robust synthesis

- \mathcal{H}_{∞} -synthesis
- \mathcal{H}_{∞} -Loopshaping synthesis
- μ -analysis and synthesis

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Glover-McFarlane Method Step 1: Loop-shaping

Considering the nominal plant P, shape the desired open-loop through a precompensator W_1 and a postcompensator W_2

$$P_s = W_2 P W_1$$

Typical good open-loop design

Large gain in the low frequency region (disturbance rejection)

<u>σ</u>(*PK*) >> 1

Small gain in the high frequency region:

 $\overline{\sigma}(PK) \ll 1$

Pauline Kergus - Karl Johan Åström

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Glover-McFarlane Method Step 2: Robust stabilization

• Normalize coprime factorization $P_s = M^{-1}N$

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theore
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Glover-McFarlane Method Step 2: Robust stabilization

- Normalize coprime factorization $P_s = M^{-1}N$
- Uncertainty $P_{\Delta} = (M + \Delta_M)^{-1}(N + \Delta_N)$ with $\Delta_M, \Delta_N \in \mathcal{RH}_{\infty}$ and $\|[\Delta_M, \Delta_N]\|_{\infty} < \varepsilon$

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theore
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Glover-McFarlane Method Step 2: Robust stabilization

- Normalize coprime factorization $P_s = M^{-1}N$
- Uncertainty $P_{\Delta} = (M + \Delta_M)^{-1}(N + \Delta_N)$ with $\Delta_M, \Delta_N \in \mathcal{RH}_{\infty}$ and $\|[\Delta_M, \Delta_N]\|_{\infty} < \varepsilon$
- **Small-gain theorem:** if K is stabilizing, the closed-loop is robustly stable iff

$$\left\| \begin{bmatrix} I\\ K \end{bmatrix} (I + P_s K)^{-1} M^{-1} \right\|_{\infty} \leq \frac{1}{\varepsilon}$$

09/09/2020 25/31

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theore
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Glover-McFarlane Method Step 2: Robust stabilization

- Normalize coprime factorization $P_s = M^{-1}N$
- Uncertainty $P_{\Delta} = (M + \Delta_M)^{-1}(N + \Delta_N)$ with $\Delta_M, \Delta_N \in \mathcal{RH}_{\infty}$ and $\|[\Delta_M, \Delta_N]\|_{\infty} < \varepsilon$
- **Small-gain theorem:** if K is stabilizing, the closed-loop is robustly stable iff

$$\left\| \begin{bmatrix} I\\ K \end{bmatrix} (I + P_{\mathcal{S}}K)^{-1}M^{-1} \right\|_{\infty} \leq \frac{1}{\varepsilon}$$

→ you want to have ε as big as possible. If ε_{max} is not big enough, redesign W_1 and W_2

Pauline Kergus - Karl Johan Åström

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis

Glover-McFarlane Method Step 3: Combine loop-shaping and robust stabilization

Synthesize a controller K_{∞} satisfying

$$\left\| \begin{bmatrix} I\\ K \end{bmatrix} (I+P_sK)^{-1}M^{-1} \right\|_{\infty} \leq \frac{1}{\varepsilon}$$

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis

Glover-McFarlane Method Step 3: Combine loop-shaping and robust stabilization

Synthesize a controller K_{∞} satisfying

Pauline Kergus - Karl Johan Åström

 W_1

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theore
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Glover-McFarlane Method

- McFarlane, D.C., and K. Glover, A Loop Shaping Design Procedure using Synthesis, IEEE Transactions on Automatic Control, 1992
 - Zhou, K., Doyle, J. C., Essentials of robust control, 1998

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theore
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Glover-McFarlane Method

- McFarlane, D.C., and K. Glover, A Loop Shaping Design Procedure using Synthesis, IEEE Transactions on Automatic Control, 1992
 - Zhou, K., Doyle, J. C., Essentials of robust control, 1998

Motivations:

- Loopshaping is done without handling closed-loop stability requirements.
- Robust stabilization is done without frequency weighting.

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theore
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Glover-McFarlane Method

- McFarlane, D.C., and K. Glover, A Loop Shaping Design Procedure using Synthesis, IEEE Transactions on Automatic Control, 1992
 - Zhou, K., Doyle, J. C., Essentials of robust control, 1998

Motivations:

- Loopshaping is done without handling closed-loop stability requirements.
- Robust stabilization is done without frequency weighting.
- ε is a measure of both closed-loop robust stability and the success of the design in meeting the loop-shaping specifications.

Uncertainty and robustness

Small gain theorem

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Pauline Kergus - Karl Johan Åström

Robust synthesis μ -analysis and synthesis

Uncertainty may be modeled in two ways:

as external inputs

Uncertainty and

Small gain theorem

 \mathcal{H}_∞ -synthesis

 \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

Where does uncertainty come from?

Robust synthesis μ -analysis and synthesis

Uncertainty may be modeled in two ways:

- as external inputs
- as perturbations to the nominal model

Incertainty may be modeled in two

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

- \mathcal{H}_∞ -synthesis \mathcal{H}_∞ -Loopshaping synthesis
- μ -analysis and synthesis

Analysis framework

 Δ is a structured block

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

LUND UNIVERSITY

Let $\beta > 0$. Then this interconnected system is well-posed and internally stable for all $\Delta(s) \in \mathcal{M}(\Delta)$ with $\|\Delta\|_{\infty} \leq 1/\beta$, and $\|\mathcal{F}(N, \Delta)\|_{\infty} \leq \beta$, if and only if

$$\sup_{\omega\in\mathbb{R}}\mu_{\Delta}(M(\jmath\omega))\leq\beta$$

Analysis framework

 Δ is a structured block

Pauline Kergus - Karl Johan Åström

u-analysis

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Analysis framework

Δ is a structured block

- **\mathcal{F}(N, \Delta)** is the transfer from ω to z
- μ_{Δ} is defined as

$$\mu_{\Delta}(M) = \frac{1}{\min\{\overline{\sigma}(\Delta) : \Delta \in \mathcal{M}(\Delta), \det(I - M\Delta) = 0\}}$$

unless no Δ makes $I - M\Delta$ singular, in which case $\mu_{\Delta}(M) = 0$.

Pauline Kergus - Karl Johan Åström

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theore
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

1

$\mu\text{-synthesis}$

- \rightarrow Iterative process called D-K iteration
 - Uses $\mathcal{H}_\infty\text{-synthesis}$ to find a controller that minimizes the closed-loop gain of the nominal system.

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertainty
- Robustness
- Small gain theore
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_∞ -synthesis \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

μ -synthesis

- \rightarrow Iterative process called D-K iteration
 - Uses $\mathcal{H}_\infty\text{-synthesis}$ to find a controller that minimizes the closed-loop gain of the nominal system.
- **2 D-step**: Robustness analysis to estimate μ_{Δ} and a new scaling *D*.

$\begin{array}{c|c} \textbf{Robust synthesis} \\ \mu\text{-analysis and synthesis} \end{array}$

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theore
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_∞ -synthesis \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

$\mu\text{-synthesis}$

- \rightarrow Iterative process called D-K iteration
- Uses $\mathcal{H}_\infty\text{-synthesis}$ to find a controller that minimizes the closed-loop gain of the nominal system.
- **2 D-step**: Robustness analysis to estimate μ_{Δ} and a new scaling *D*.
- **3** K-step: New controller design to minimize the new scaled \mathcal{H}_{∞} -norm obtained in step 2.

Robust synthesis µ-analysis and synthesis

Robust performance

Uncertainty and robustness Where does uncertainty come from?

Robust synthesis

 \mathcal{H}_∞ -synthesis \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

μ -synthesis

- \rightarrow Iterative process called D-K iteration
- Uses $\mathcal{H}_\infty\text{-synthesis}$ to find a controller that minimizes the closed-loop gain of the nominal system.
- **2 D-step**: Robustness analysis to estimate μ_{Δ} and a new scaling *D*.
- **3** K-step: New controller design to minimize the new scaled \mathcal{H}_{∞} -norm obtained in step 2.
- 4 Repeats steps 2 and 3 until the robust performance stops improving.

Robust synthesis μ -analysis and synthesis

Uncertainty and

- Where does uncertainty come from?

 \mathcal{H}_{∞} -synthesis μ -analysis and synthesis

μ -synthesis

- \rightarrow Iterative process called D-K iteration
- Uses \mathcal{H}_{∞} -synthesis to find a controller that minimizes the closed-loop gain of the nominal system.
- **D-step**: Robustness analysis to estimate μ_{Λ} and a new scaling D. 2
- **K-step**: New controller design to minimize the new scaled \mathcal{H}_{∞} -norm 3 obtained in step 2.

Repeats steps 2 and 3 until the robust performance stops improving.

Extremely computationally demanding!

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Understand and model uncertainty

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

- Understand and model uncertainty
- Robustness analysis

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

Major goal of robust control: stability and performance under uncertainty

- Understand and model uncertainty
- Robustness analysis
 - small-gain theorem

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

- Understand and model uncertainty
- Robustness analysis
 - small-gain theorem
 - mu-analysis

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

- Understand and model uncertainty
- Robustness analysis
 - small-gain theorem
 - mu-analysis
- Robust design

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_∞ -synthesis \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

- Understand and model uncertainty
- Robustness analysis
 - small-gain theorem
 - mu-analysis
- Robust design
 - $\blacksquare \ \mathcal{H}_\infty\text{-synthesis}$

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theorer
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_∞ -synthesis \mathcal{H}_∞ -Loopshaping synthesis μ -analysis and synthesis

- Understand and model uncertainty
- Robustness analysis
 - small-gain theorem
 - mu-analysis
- Robust design
 - \mathcal{H}_{∞} -synthesis
 - \blacksquare \mathcal{H}_{∞} -loopshaping (Glover-McFarlane)

Uncertainty and robustness

- Where does uncertainty come from?
- Modelling uncertaint
- Robustness
- Small gain theorem
- Robust stability
- Robust performance

Robust synthesis

 \mathcal{H}_{∞} -synthesis \mathcal{H}_{∞} -Loopshaping synthesis μ -analysis and synthesis

- Understand and model uncertainty
- Robustness analysis
 - small-gain theorem
 - mu-analysis
- Robust design
 - \mathcal{H}_{∞} -synthesis
 - \blacksquare \mathcal{H}_{∞} -loopshaping (Glover-McFarlane)
 - μ -analysis and synthesis