

Control System Synthesis - Model Predictive Control PHD CLASS - FALL 2020

Basic idea How does MPC work? Design parameters

Important issues

Going further

Robust MPC Stochastic MPC

Stochastic MPG

Running MPC faster and explicit MPC

Adaptive and Gain-scheduled MPC

Nonlinear MPC

Data-driven MPC

1 Introduction

2 Fundamentals

3 Design techniques

- PID control
- Optimal control and LQG
- Robust control

Basic idea How does MPC work? Design parameters

Important issues

Going further

Robust MPC

Stochastic MPC

Running MPC faster and explicit MPC

Adaptive and Gain-scheduled MPC

Nonlinear MPC

Data-driven MPC

1 Introduction

2 Fundamentals

3 Design techniques

- PID control
- Optimal control and LQG
- Robust control
- Model Predictive Control
- Adaptive Control
- Data-driven Control

Basic idea How does MPC work?

Design parameters

Important issues

Going further

Robust MPC

Stochastic MPC

Running MPC faster and explicit MPC

Adaptive and Gain-scheduled MPC

Nonlinear MPC

Data-driven MPC

Content overview

MPC design

- Basic idea
- How does MPC work?
- Design parameters
- Important issues

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC

UNIVERSITY

- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

1 MPC design

- Basic idea
- How does MPC work?
- Design parameters
- Important issues

2 Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

$\underset{\rm Basic \ idea}{\rm MPC} \ \underset{\rm design}{\rm design}$

MPC design

Basic idea

- How does MPC work? Design parameters
- Important issues

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

$\underset{\rm Basic \ idea}{\rm MPC} \ design$

MPC design

Basic idea

How does MPC work? Design parameters Important issues

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

MPC design Basic idea

MPC design

Basic idea

How does MPC work? Design parameters Important issues

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

MPC design Basic idea

MPC design

Basic idea

How does MPC work? Design parameters Important issues

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

MPC design Basic idea

MPC design

Basic idea

How does MPC work? Design parameters Important issues

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

MPC design

- Basic idea How does MPC work? Design parameters

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

MPC is a form of feedback control

MPC design

Basic idea How does MPC work? Design parameters

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC Nonlinear MPC
- Data-driven MPC

- MPC is a form of feedback control
- that solves an optimization problem to select the optimal control at each time step

MPC design

Basic idea How does MPC work? Design parameters Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC Nonlinear MPC
- Data-driven MPC

- MPC is a form of feedback control
- that solves an optimization problem to select the optimal control at each time step
- using a model to predict the future behaviour on a given horizon

Pauline Kergus - Karl Johan Åström

MPC design

Basic idea How does MPC work? Design parameters Important issues

Going further

- Robust MPC Stochastic MPC Running MPC faster
- Adaptive and Gain-scheduled MPC Nonlinear MPC
- Data-driven MPC

- MPC is a form of feedback control
- that solves an optimization problem to select the optimal control at each time step
- using a model to predict the future behaviour on a given horizon
- under constraints

Pauline Kergus - Karl Johan Åström

MPC design

Going further

- Robust MPC Stochastic MPC Running MPC faster a
- Adaptive and Gain-scheduled MPC Nonlinear MPC
- Data-driven MPC

- MPC is a form of feedback control
- that solves an optimization problem to select the optimal control at each time step
- using a model to predict the future behaviour on a given horizon
- under constraints

Pauline Kergus - Karl Johan Åström

MPC design

Basic idea How does MPC work?

Design parameters

Going further

Robust MPC

Stochastic MPC

Running MPC faster and explicit MPC Adaptive and Gain-scheduled MPC

Nonlinear MPC

Data-driven MPC

sample time

- prediction horizon
- control horizon
- constraints
- weights

Basic idea How does MPC work?

Design parameters

Going further

Robust MPC

Stochastic MPC

Running MPC faster and explicit MPC

Adaptive and Gain-scheduled MPC Nonlinear MPC

Data-driven MPC

sample time

- prediction horizon
- control horizon
- constraints
- weights
- \rightarrow influence the controller performances

Basic idea How does MPC work?

Design parameters

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC Nonlinear MPC
- Data-driven MPC

- sample time
- prediction horizon
- control horizon
- constraints
- weights
- \rightarrow influence the controller performances
- \rightarrow influence computational complexity

Sample time T_s

MPC design

Basic idea How does MPC work?

Design parameters

Important issues

Going further

Robust MPC Stochastic MPC

Duraning MDC (actu

Running MPC faster and explicit MPC

Adaptive and Gain-scheduled MPC

Nonlinear MPC

Data-driven MPC

Pauline Kergus - Karl Johan Åström

MPC design

Basic idea How does MPC work?

Design parameters

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Sample time T_s

Pauline Kergus - Karl Johan Åström

MPC design

- Basic idea How does MPC work?
- Design parameters
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Sample time T_s

- **T**_s too big \Rightarrow slow response to disturbances/setpoint changes
- T_s too small \Rightarrow faster response but computational load increase

Pauline Kergus - Karl Johan Åström

Sample time T_s

MPC design Basic idea How does MPC work? Design parameters

Robust MPC

Stochastic MPC

Nonlinear MPC

• T_s too big \Rightarrow slow response to disturbances/setpoint changes

MPC controller

- T_s too small \Rightarrow faster response but computational load increase
- **Recommendation:** $\frac{T_r}{20} \leq T_s \leq \frac{T_r}{10}$

 y^{ref}

Pauline Kergus - Karl Johan Åström

Control System Synthesis

U

d

y

Basic idea How does MPC work?

Design parameters

Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Prediction horizon N_p

MPC design Basic idea How does MPC work?

Design parameters

Robust MPC Stochastic MPC

MPC

Running MPC faster and explicit

Adaptive and Gain-scheduled MPC Nonlinear MPC

MPC design Design parameters

Prediction horizon N_{D}

Pauline Kergus - Karl Johan Åström

Prediction horizon $N_{\rm p}$

MPC design

- Basic idea How does MPC work?
- Design parameters
- Important issues

Going further

- Robust MPC Stochastic MPC Running MPC faster and explicit MPC Adaptive and Gain-scheduled MPC Nonlinear MPC
- Data-driven MPC

• N_{ρ} too small \Rightarrow may be too late to react to disturbances

■ N_p too big ⇒ computational load increase (potentially unnecessary due to potential disturbances)

Past Future Predicted output Setpoint Future control actions $k \ k+1$

Prediction horizon N_p

MPC design

- Basic idea How does MPC work?
- Design parameters
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Data-driven MPC

- N_p too small \Rightarrow may be too late to react to disturbances
- N_p too big ⇒ computational load increase (potentially unnecessary due to potential disturbances)
- Recommendation: Choose N_p to cover the significant dynamics of the system

$$N_{
m p}T_{s}pprox T_{settling}$$

Pauline Kergus - Karl Johan Åström

Adaptive and Gain-scheduled MPC

MPC design Basic idea How does MPC work?

Design parameters

Robust MPC Stochastic MPC Running MPC faster and explicit

Nonlinear MPC

MPC design Design parameters

Control horizon N_c

 \rightarrow usually only the first couple of control moves have a significant effect on the predicted output behavior

MPC design

Basic idea How does MPC work?

Design parameters

Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Control horizon N_c

 \rightarrow usually only the first couple of control moves have a significant effect on the predicted output behavior

N_c too small \Rightarrow not enough degrees of freedom to reach the objective

Pauline Kergus - Karl Johan Åström

How does MPC work?

Design parameters

- Robust MPC Stochastic MPC

- Nonlinear MPC Data-driven MPC

Control horizon N_c

 \rightarrow usually only the first couple of control moves have a significant effect on the predicted output behavior

- \blacksquare N_c too small \Rightarrow not enough degrees of freedom to reach the objective
- N_c too big \Rightarrow computational load increase

Pauline Kergus - Karl Johan Åström

Design parameters

Control horizon N_c

 \rightarrow usually only the first couple of control moves have a significant effect on the predicted output behavior

- N_c too small \Rightarrow not enough degrees of freedom to reach the objective
- N_c too big \Rightarrow computational load increase
- **Recommendation:** 10 to 20% of N_p , minimum 2-3 steps

Pauline Kergus - Karl Johan Åström

Control System Synthesis

MPC design

Basic idea How does MPC work?

Design parameters

Important issues

Going further

Robust MPC Stochastic MPC

Running MPC faster and explici MPC

Adaptive and Gain-scheduled MP

Data-driven MPC

- Basic idea How does MPC work?
- Design parameters
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

MPC design

Design parameters

Constraints

- on the inputs, outputs or inputs variations
- Soft constraints
- Hard constraints

Design parameters

Constraints

- on the inputs, outputs or inputs variations
- Soft constraints: can be violated
- Hard constraints: cannot be violated

Adaptive and Gain-scheduled MPC Nonlinear MPC

MPC design Basic idea

Robust MPC Stochastic MPC Running MPC faster and explicit

MPC

How does MPC work? Design parameters

- Basic idea How does MPC work?
- Design parameters
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Design parameters

Constraints

- on the inputs, outputs or inputs variations
- Soft constraints
- Hard constraints
- conflicting hard constraints ⇒ may lead to an unfeasibility for the optimization problem

- Basic idea How does MPC work?
- Design parameters
- Important issues

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

MPC design

Design parameters

Constraints

- on the inputs, outputs or inputs variations
- Soft constraints
- Hard constraints
- conflicting hard constraints \Rightarrow may lead to an unfeasibility for the optimization problem
- Output constraints as soft constraints

/IPC design

- Basic idea How does MPC work?
- Design parameters

Important issues

Going further

- Robust MPC Stochastic MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

LUND UNIVERSITY

MPC design

Design parameters

Constraints

- on the inputs, outputs or inputs variations
- Soft constraints
- Hard constraints
- conflicting hard constraints \Rightarrow may lead to an unfeasibility for the optimization problem
- Output constraints as soft constraints

Avoid having hard constraints on both inputs and inputs variations

Pauline Kergus - Karl Johan Åström

MPC design

- Basic idea How does MPC work?
- Design parameters

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Weights

The MPC controller may have different objectives
MPC design

Basic idea How does MPC work?

Design parameters

Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Weights

- The MPC controller may have different objectives
 - track as close as possible a reference signal

MPC design

Basic idea How does MPC work?

Design parameters

Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Weights

- The MPC controller may have different objectives
 - track as close as possible a reference signal
 - smooth control moves to avoid aggressive control

MPC design

- Basic idea How does MPC work?
- Design parameters
- Important issues

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Weights

- The MPC controller may have different objectives
 - track as close as possible a reference signal
 - smooth control moves to avoid aggressive control
 - $\rightarrow\,$ Weights allow you to achieve a balanced performance between these competing goals

MPC design

- Basic idea How does MPC work?
- Design parameters

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

LUND UNIVERSITY

Weights

- The MPC controller may have different objectives
 - track as close as possible a reference signal
 - smooth control moves to avoid aggressive control
 - $\rightarrow\,$ Weights allow you to achieve a balanced performance between these competing goals
- relative weighting between the different objectives

MPC design

- Basic idea How does MPC work?
- Design parameters

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Weights

- The MPC controller may have different objectives
 - track as close as possible a reference signal
 - smooth control moves to avoid aggressive control
 - → Weights allow you to achieve a balanced performance between these competing goals
- relative weighting between the different objectives
- different weights for different signals for MIMO systems

MPC design

- Basic idea How does MPC work?
- Design parameters

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Weights

- The MPC controller may have different objectives
 - track as close as possible a reference signal
 - smooth control moves to avoid aggressive control
 - → Weights allow you to achieve a balanced performance between these competing goals
- relative weighting between the different objectives
- different weights for different signals for MIMO systems
- \rightarrow affect the controller performances

Linear system

MPC design

Basic idea How does MPC work?

Design parameters

Going further

Robust MPC Stochastic MPC

Running MPC faster and explicit MPC

Adaptive and Gain-scheduled MPC

Nonlinear MPC

Data-driven MPC

MPC design

- Basic idea How does MPC work?
- Design parameters

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Linear system

Linear constraints

MPC design

- Basic idea How does MPC work?
- Design parameters

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Linear system

- Linear constraints
- Quadratic cost function

MPC design

- Basic idea How does MPC work?
- Design parameters

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

- Linear constraints
- Quadratic cost function
- \rightarrow LTI MPC

MPC design

- Basic idea How does MPC work?
- Design parameters

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Linear system

- Linear constraints
- Quadratic cost function
- \rightarrow LTI MPC
 - convex optimization problem

Summary

MPC design

- Basic idea How does MPC work?
- Design parameters

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Linear system

MPC design

- Linear constraints
- Quadratic cost function
- \rightarrow LTI MPC
 - convex optimization problem
 - single global optimum of the cost function

UNIVERSITY

MPC design Summary

MPC design

How does MPC work?

Design parameters

- Robust MPC
- Running MPC faster and explicit
- Adaptive and Gain-scheduled MPC

- Linear system
- Linear constraints
- Quadratic cost function
- LTI MPC \rightarrow
 - convex optimization problem
 - single global optimum of the cost function
 - well-studied problem, many numerical methods and software to solve it

How does MPC work? Design parameters

Important issues

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Linear system

MPC design

- Linear constraints
- Quadratic cost function

\rightarrow LTI MPC

Summary

- convex optimization problem
- single global optimum of the cost function
- well-studied problem, many numerical methods and software to solve it

Compared to LQR:

- MPC solves the optimization problem in a smaller time window ⇒ suboptimal solution
- MPC is an online technique and can handle deviations of the system from the model

/IPC design

- Basic idea How does MPC work?
- Design parameters

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Linear system

MPC design

Summary

- Linear constraints
- Quadratic cost function
- \rightarrow LTI MPC
 - convex optimization problem
 - single global optimum of the cost function
 - well-studied problem, many numerical methods and software to solve it

The state is often used in the cost function \rightarrow state estimator may be needed

Important issues

MPC design

- Basic idea How does MPC work?
- Design parameters Important issues

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

MPC design Important issues

MPC design

- Basic idea How does MPC work?
- Design parameters

Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Feasibility \rightarrow soft state or output constraints introducing a slack variable ε

MPC design Important issues

MPC design

- Basic idea How does MPC work?
- Design parameters

Important issues

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC Nonlinear MPC
- Data-driven MPC

Feasibility → soft state or output constraints introducing a slack variable *ε* Stability

MPC design

Basic idea How does MPC work?

Important issues

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Feasibility \rightarrow soft state or output constraints introducing a slack variable ε

- Stability → either use the minimizer of the cost function as a Lyapunov function or require the norm of the state *x* to shrink
 - Ferminal constraint $x(k + N_p) = 0$ or set (involves the LQ gain) or terminal cost
 - Infinite Output Prediction Horizon $N_p = \infty$
 - Contraction Constraint $||x(t+1)|| \le \alpha ||x(t)||$ with $\alpha < 1$

MPC design

Basic idea How does MPC work?

Important issues

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC Nonlinear MPC
- Data-driven MPC

- Feasibility \rightarrow soft state or output constraints introducing a slack variable ε
- Stability → either use the minimizer of the cost function as a Lyapunov function or require the norm of the state x to shrink
- Computational cost

MPC design

Basic idea How does MPC work?

Important issues

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC Nonlinear MPC
- Data-driven MPC

- Feasibility \rightarrow soft state or output constraints introducing a slack variable ε
- **Stability** → either use the minimizer of the cost function as a Lyapunov function or require the norm of the state *x* to shrink
- Computational cost \rightarrow design parameters and stability constraints (in the LTI MPC case)

- Basic idea How does MPC work?
- Important issues

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

MPC design

- Basic idea
- How does MPC work?
- Design parameters
- Important issues

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

Robust MPC

- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Basic MPC:

- the system and the prediction model are the same
- no unmeasured noise/disturbance

MPC design

Basic idea How does MPC work? Design parameters

Going further

Robust MPC

- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC Nonlinear MPC
- Data-driven MPC

Basic MPC:

- the system and the prediction model are the same
- no unmeasured noise/disturbance

Fundamental question: what about robustness to model uncertainty and noise?

Bemporad, A., and Morari, M. (1999). *Robust model predictive control: A survey.*, in *Robustness in identification and control*, Springer.

MPC design

Basic idea How does MPC work? Design parameters

Going further

Robust MPC

- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC Nonlinear MPC

LUND UNIVERSITY

Basic MPC:

- the system and the prediction model are the same
- no unmeasured noise/disturbance

Fundamental question: what about robustness to model uncertainty and noise?

Bemporad, A., and Morari, M. (1999). *Robust model predictive control: A survey.*, in *Robustness in identification and control*, Springer. **Robustness**:

- specific uncertainty range: $P \in P$, $w \in W$
- robust stability, robust performance and robust constraints fulfillment

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

Robust MPC

- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Nominal vs robust MPC

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

Robust MPC

- Stochastic MPC
- Running MPC faster and explicit MPC

1

- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Nominal vs robust MPC

Robust performances:min $\max_{\substack{U \\ w \in \mathcal{P}}} J(U, x, P, w)$

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

Robust MPC

- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Nominal vs robust MPC

Robust performances: $\begin{matrix} \max \\ U \end{matrix} \\ P \in \mathcal{P} \\ w \in \mathcal{W} \end{matrix}$

Robust constraints fulfillment: Constraint Tightening MPC (nominal prediction model + changing the constraints to achieve robustness).

- How does MPC work?

Robust MPC

- Stochastic MPC
- Running MPC faster and explicit
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Robust constraints fulfillment: Constraint Tightening MPC (nominal 2 prediction model + changing the constraints to achieve robustness).

 $P \in \mathcal{P}$

 $w \in \mathcal{W}$

Open-loop or a closed-loop prediction scheme? 3

Robust performances:min max J(U, x, P, w)U

 \rightarrow include a feedback term into the prediction model

$$u = Fx + v$$

Nominal vs robust MPC

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

Robust MPC

- Stochastic MPC
- Running MPC faster and explicit MPC

2

- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Nominal vs robust MPC

Robust constraints fulfillment: Constraint Tightening MPC (nominal prediction model + changing the constraints to achieve robustness).

Open-loop or a closed-loop prediction scheme ?

 \rightarrow include a feedback term into the prediction model

$$u = Fx + v$$

4 Robust stability enforcement

- indirectly: performance objective and uncertainty description
- directly: type of robust contraction constraint

Pauline Kergus - Karl Johan Åström

MPC design

Basic idea How does MPC work? Design parameters

Bohust MPC

- Stochastic MPC
- Running MPC faster and explicit MPC Adaptive and Gain-scheduled MPC Nonlinear MPC Data-driven MPC

A. Mesbah, *Stochastic Model Predictive Control: An Overview and Perspectives for Future Research*, in IEEE Control Systems Magazine, 2016.

Heirung, T. A. N., Paulson, J. A., O'Leary, J., Mesbah, A. *Stochastic model predictive control—how does it work?*, Computers Chemical Engineering, 2018.

Probabilistic descriptions of uncertainties (can be challenging)

MPC design

Basic idea How does MPC work? Design parameters

Going further

- Robust MPC
- Running MPC faster and explicit MPC Adaptive and Gain-scheduled MPC Nonlinear MPC Data-driven MPC

A. Mesbah, *Stochastic Model Predictive Control: An Overview and Perspectives for Future Research*, in IEEE Control Systems Magazine, 2016.

Heirung, T. A. N., Paulson, J. A., O'Leary, J., Mesbah, A. *Stochastic model predictive control—how does it work?*, Computers Chemical Engineering, 2018.

- Probabilistic descriptions of uncertainties (can be challenging)
- Noise and disturbances are stochastic variables, making the prediction model stochastic

MPC design

Basic idea How does MPC work? Design parameters

Going further

- Robust MPC
- Running MPC faster and explicit MPC Adaptive and Gain-scheduled MPC Nonlinear MPC Data-driven MPC

A. Mesbah, *Stochastic Model Predictive Control: An Overview and Perspectives for Future Research*, in IEEE Control Systems Magazine, 2016.

Heirung, T. A. N., Paulson, J. A., O'Leary, J., Mesbah, A. *Stochastic model predictive control—how does it work?*, Computers Chemical Engineering, 2018.

- Probabilistic descriptions of uncertainties (can be challenging)
- Noise and disturbances are stochastic variables, making the prediction model stochastic
- Chance constraints: constraints satisfied with at least a priori specified probability level

MPC design

Basic idea How does MPC work? Design parameters

Going further

- Robust MPC
- Running MPC faster and explicit MPC Adaptive and Gain-scheduled MPC Nonlinear MPC Data-driven MPC

A. Mesbah, *Stochastic Model Predictive Control: An Overview and Perspectives for Future Research*, in IEEE Control Systems Magazine, 2016.

Heirung, T. A. N., Paulson, J. A., O'Leary, J., Mesbah, A. *Stochastic model predictive control—how does it work?*, Computers Chemical Engineering, 2018.

- Probabilistic descriptions of uncertainties (can be challenging)
- Noise and disturbances are stochastic variables, making the prediction model stochastic
- Chance constraints: constraints satisfied with at least a priori specified probability level
- rooted in stochastic programming and chance-constrained optimization

Going further

MPC design

- Basic idea
- How does MPC work?
- Design parameters
- Important issues

Going further

Robust MPC Stochastic MPC

Running MPC faster and explicit MPC

Adaptive and Gain-scheduled MPC Nonlinear MPC Data-driven MPC

MPC design

- Basic idea
- How does MPC work?
- Design parameters
- Important issues

2 Going further

- Robust MPC
- Stochastic MPC

Running MPC faster and explicit MPC

- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Going further Running MPC faster and explicit MPC

	<u> </u>			

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC Nonlinear MPC Data-driven MPC

\blacksquare online optimization problem at each time step \rightarrow computationally complex
MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

Robust MPC Stochastic MPC

Running MPC faster and explicit MPC

Adaptive and Gain-scheduled MPC Nonlinear MPC Data-driven MPC

online optimization problem at each time step → computationally complex
 usually formulated as a QP problem

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

Robust MPC Stochastic MPC

Running MPC faster and explicit MPC

Adaptive and Gain-scheduled MPC Nonlinear MPC Data-driven MPC

online optimization problem at each time step → computationally complex usually formulated as a QP problem

■ increasing number of states/constraints, prediction and control horizons → increase complexity

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

Robust MPC Stochastic MPC

Running MPC faster and explicit MPC

Adaptive and Gain-scheduled MPC Nonlinear MPC Data-driven MPC

- increasing number of states/constraints, prediction and control horizons → increase complexity
- okay for systems with slow dynamics (process industry)

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

Robust MPC Stochastic MPC

Running MPC faster and explicit MPC

- online optimization problem at each time step → computationally complex
 usually formulated as a QP problem
- increasing number of states/constraints, prediction and control horizons → increase complexity
- okay for systems with slow dynamics (process industry)
- what about applications with small sample times? (autonomous vehicles $\approx ms$)

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

Robust MPC Stochastic MPC

Running MPC faster and explicit MPC

- online optimization problem at each time step → computationally complex
 usually formulated as a QP problem
- increasing number of states/constraints, prediction and control horizons → increase complexity
- okay for systems with slow dynamics (process industry)
- what about applications with small sample times? (autonomous vehicles $\approx ms$)
- limited memory

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

Robust MPC Stochastic MPC

Running MPC faster and explicit MPC

- online optimization problem at each time step → computationally complex
 usually formulated as a QP problem
- increasing number of states/constraints, prediction and control horizons → increase complexity
- okay for systems with slow dynamics (process industry)
- what about applications with small sample times? (autonomous vehicles $\approx ms$)
- limited memory
- \rightarrow design parameters

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

Robust MPC Stochastic MPC

Running MPC faster and explicit MPC

- online optimization problem at each time step → computationally complex
 usually formulated as a QP problem
- increasing number of states/constraints, prediction and control horizons → increase complexity
- okay for systems with slow dynamics (process industry)
- what about applications with small sample times? (autonomous vehicles $\approx ms$)
- limited memory
- \rightarrow design parameters
- → model order reduction

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

Robust MPC Stochastic MPC

Running MPC faster and explicit MPC

Adaptive and Gain-scheduled MPC Nonlinear MPC Data-driven MPC

online optimization problem at each time step → computationally complex usually formulated as a QP problem

- increasing number of states/constraints, prediction and control horizons → increase complexity
- okay for systems with slow dynamics (process industry)
- what about applications with small sample times? (autonomous vehicles $\approx ms$)
- limited memory
- \rightarrow design parameters
- → model order reduction
- → lower complexity

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

Robust MPC Stochastic MPC

Running MPC faster and explicit MPC

- online optimization problem at each time step → computationally complex
 usually formulated as a QP problem
- increasing number of states/constraints, prediction and control horizons → increase complexity
- okay for systems with slow dynamics (process industry)
- what about applications with small sample times? (autonomous vehicles $\approx ms$)
- limited memory
- → design parameters
- → model order reduction
- → lower complexity
- \rightarrow maximum number of optimization iterations
 - \rightarrow suboptimal solution but still satisfies constraints

How to run MPC faster?

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC Nonlinear MPC Data-driven MPC

Explicit MPC precomputes the optimal solution in different state-regions

How to run MPC faster?

- MPC design
- Basic idea How does MPC work?
- Design parameters

Going further

Robust MPC Stochastic MPC

Running MPC faster and explicit MPC

Adaptive and Gain-scheduled MPC Nonlinear MPC Data-driven MPC

Explicit MPC precomputes the optimal solution in different state-regions
 as linear functions that are piecewise affine and continuous in x

How to run MPC faster?

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

Robust MPC Stochastic MPC

Running MPC faster and explicit MPC

Adaptive and Gain-scheduled MPC Nonlinear MPC Data-driven MPC

Explicit MPC precomputes the optimal solution in different state-regions
 as linear functions that are piecewise affine and continuous in x
 Online evaluation the state region and of u

Pauline Kergus - Karl Johan Åström

How to run MPC faster?

- MPC design
- Basic idea How does MPC work?
- Important issues

Going further

Robust MPC Stochastic MPC

Running MPC faster and explicit MPC

Adaptive and Gain-scheduled MPC Nonlinear MPC Data-driven MPC

- Explicit MPC precomputes the optimal solution in different state-regions
 as linear functions that are piecewise affine and continuous in x
- Online evaluation the state region and of u
- Many regions \rightarrow time consuming and memory needed

Pauline Kergus - Karl Johan Åström

Going further

MPC design

- Basic idea
- How does MPC work?
- Design parameters
- Important issues

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC

UNIVERSITY

Adaptive and Gain-scheduled MPC

Nonlinear MPC

MPC design

- Basic idea
- How does MPC work?
- Design parameters
- Important issues

2 Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Going further Adaptive and Gain-scheduled MPC

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC

Adaptive and Gain-scheduled MPC

- Nonlinear MPC
- Data-driven MPC

Nonlinear systems + linear constraints + quadratic cost function

ightarrow linearization to benefit from the nice properties of linear MPC

Going further Adaptive and Gain-scheduled MPC

MPC design

- Basic idea How does MPC work?
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Nonlinear systems + linear constraints + quadratic cost function

→ linearization to benefit from the nice properties of linear MPC
 Adaptive MPC: linearized model computed on the fly, updated at each time step

Going further Adaptive and Gain-scheduled MPC

MPC design

- Basic idea How does MPC work?
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC Nonlinear MPC
- Data-driven MPC

Nonlinear systems + linear constraints + quadratic cost function

- \rightarrow linearization to benefit from the nice properties of linear MPC
- Adaptive MPC: linearized model computed on the fly, updated at each time step
- Gain-scheduled MPC: switch between different MPC controllers for different operating points of interest

Going further

MPC design

- Basic idea
- How does MPC work?
- Design parameters
- Important issues

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC

Nonlinear MPC

Data-driven MPC

MPC design

- Basic idea
- How does MPC work?
- Design parameters
- Important issues

2 Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC

Nonlinear MPC

Data-driven MPC

 \blacksquare use of a nonlinear plant model \rightarrow more accurate prediction

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC

Nonlinear MPC

Data-driven MPC

Nonlinear systems + nonlinear constraints + nonlinear cost function

- use of a nonlinear plant model \rightarrow more accurate prediction
- \blacksquare non convex problem, multiple local optima \rightarrow more challenging to solve

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Nonlinear systems + nonlinear constraints + nonlinear cost function

- use of a nonlinear plant model \rightarrow more accurate prediction
- \blacksquare non convex problem, multiple local optima \rightarrow more challenging to solve
- \rightarrow the efficiency depends on the used nonlinear solver

MPC design

- Basic idea How does MPC work? Design parameters
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC

Nonlinear systems + nonlinear constraints + nonlinear cost function

- use of a nonlinear plant model \rightarrow more accurate prediction
- \blacksquare non convex problem, multiple local optima \rightarrow more challenging to solve
- \rightarrow the efficiency depends on the used nonlinear solver
- economic MPC is part of nonlinear MPC

Going further Dealing with non-linearities

MPC design

- Basic idea How does MPC work?
- Design parameters
- Important issues

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC

Nonlinear MPC

Data-driven MPC

Going further

MPC design

- Basic idea
- How does MPC work?
- Design parameters
- Important issues

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC Nonlinear MPC

Data-driven MPC

MPC design

- Basic idea
- How does MPC work?
- Design parameters
- Important issues

2 Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

MPC design

- Basic idea How does MPC work?
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC Nonlinear MPC

Data-driven MPC

Good MPC closed-loop performance implies an accurate model

MPC design

- Basic idea How does MPC work?
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Nonlinear MPC

Data-driven MPC

Good MPC closed-loop performance implies an accurate modelWhen no accurate model is available:

MPC design

- Basic idea How does MPC work?
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC

Data-driven MPC

- Good MPC closed-loop performance implies an accurate modelWhen no accurate model is available:
 - robust MPC (reduced performance due to worst-case conservative assumptions)

MPC design

- Basic idea How does MPC work?
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC Nonlinear MPC

Data-driven MPC

- When no accurate model is available:
 - robust MPC (reduced performance due to worst-case conservative assumptions)
 stochastic MPC

MPC design

- Basic idea
- How does MPC work?
- Design parameters
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit
- MPG Adaptive and Gain-scheduled MPC
- Nonlinear MPC

Data-driven MPC

- Good MPC closed-loop performance implies an accurate model
- When no accurate model is available:
 - robust MPC (reduced performance due to worst-case conservative assumptions)
 - stochastic MPC
 - data-driven MPC : online adaptation/learning of the prediction model or of uncertainties

Huang, B., Kadali, R. *Dynamic modeling, predictive control and performance monitoring: a data-driven subspace approach*, Springer, 2008.

MPC design

- Basic idea
- How does MPC work?
- Important issues

Going further

- Robust MPC
- Stochastic MPC
- Running MPC faster and explicit MPC
- Adaptive and Gain-scheduled MPC
- Data-driven MPC

- Good MPC closed-loop performance implies an accurate model
- When no accurate model is available:
 - robust MPC (reduced performance due to worst-case conservative assumptions)
 - stochastic MPC
 - data-driven MPC : online adaptation/learning of the prediction model or of uncertainties
- MPC and learning:

Hewing, L., Wabersich, K. P., Menner, M., Zeilinger, M. N. *Learning-based model predictive control: Toward safe learning in control*, Annual Review of Control, Robotics, and Autonomous Systems, 2020.

Pauline Kergus - Karl Johan Åström

MPC design

- Basic idea How does MPC work?
- Important issues

Going further

- Robust MPC Stochastic MPC
- Running MPC faster and explicit
- MPC Adaptive and Gain-scheduled MPC
- Nonlinear MPC
- Data-driven MPC

Good MPC closed-loop performance implies an accurate model

- When no accurate model is available:
 - robust MPC (reduced performance due to worst-case conservative assumptions)
 stochastic MPC
 - data-driven MPC : online adaptation/learning of the prediction model or of uncertainties
- MPC and learning:
 - MPC for constraints/safety and with learning

MPC design

- Basic idea How does MPC work?
- Design parameters
- Going further
- Robust MPC
- Running MPC faster and explicit
- Adaptive and Gain-scheduled MPC
- Data-driven MPC

Good MPC closed-loop performance implies an accurate model

- When no accurate model is available:
 - robust MPC (reduced performance due to worst-case conservative assumptions)
 stochastic MPC
 - data-driven MPC : online adaptation/learning of the prediction model or of uncertainties
- MPC and learning:
 - MPC for constraints/safety and with learning
 - Learning for closed-loop performances