

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality Internal stability

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality Internal stability

Requirements:

- Stability
- Reference tracking
- Disturbance rejection
- Noise attenuation
- Robustness to process variations

Pauline Kergus - Karl Johan Åström

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality Internal stability

Requirements:

- Stability
- Reference tracking
- Disturbance rejection
- Noise attenuation
- Robustness to process variations

Pauline Kergus - Karl Johan Åström

The Gang of Four:

$$S = \frac{1}{1+PC}$$

$$T = \frac{PC}{1+PC}$$

$$CS = \frac{C}{1+PC}$$

$$RC = \frac{P}{1+PC}$$

$$\bullet PS = \frac{P}{1+PC}$$

Driving example: Cruise control Design trade-offs Expression in the frequency-domain

System design considerations Sensitivity minimization Internal stability

Nyquist plot

- open-loop L = PC
- stability criteria
- margins

Two tools

Bode plot

- closed-loop
- performances of the Gang of Four

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequali Internal stability

1 Introduction

- 2 Fundamentals: problem formulation
 - System representation and feedback basics
 - Specifications and performance limitations
- 3 Design techniques

Content overview

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-dom Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequa

Performance specifications

- Driving example: Cruise control
- Design trade-offs
- Expression in the frequency-domain
- Loopshaping

Fundamental limitations

- System design considerations
- Sensitivity minimization
- Bode's integral formula
- Gain crossover frequency inequality
- Internal stability

Driving example: Cruise control

Performance specifications

Driving example: Cruise control

Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequali Internal stability

 $\dot{mv} = -bv - mgsin(heta) + u$ $sin(heta) \sim heta$

Driving example: Cruise control

Performance specifications

Driving example: Cruise control

Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequali Internal stability

 $\dot{mv} = -bv - mgsin(heta) + u$ $sin(heta) \sim heta$

Driving example: Cruise control

Performance specifications

Driving example: Cruise control Design trade-offs

Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality Internal stability

Follow a reference signal: the servo problem

• Act on $T = \frac{V(s)}{R(s)} = \frac{PC}{1+PC}$

In time-domain, we want:

- Rise time < 5s
- Overshoot < 10%</p>
- Steady-state error < 2%

Figure: Step response of the system to u = 500N.

Pauline Kergus - Karl Johan Åström

Driving example: Cruise control

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain

Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequal Internal stability

Follow a reference signal: the servo problem

Act on $T = \frac{V(s)}{R(s)} = \frac{PC}{1+PC}$

Figure: Step responses of the closed-loop for different k_{p} .

Pauline Kergus - Karl Johan Åström

specifications Driving example: Cruise control Design trade-offs Expression in the frequency-domain

System design considerations Sensitivity minimization

Internal stability

Gain crossover frequency inequality

Performance specifications

Design trade-offs

Effect on noise sensitivity:
$$T_{n \rightarrow u} = -\frac{C}{1+PC}$$

Pauline Kergus - Karl Johan Åström

Design trade-offs

Performance specifications

Driving example: Cruise control

Design trade-offs

Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequal Internal stability

Effect on noise sensitivity: T_{n→u} = -C/(1+PC)
Effect on the command: T_{r→u} = C/(1+PC) → Limitations of the actuators!

Pauline Kergus - Karl Johan Åström

Design trade-offs

Performance specifications

Driving example: Cruise control

Design trade-offs

Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequal Internal stability

Effect on noise sensitivity: T_{n→u} = - C/(1+PC)
Effect on the command: T_{r→u} = C/(1+PC) → Limitations of the actuators!
Effect on disturbance rejection T_{r→v} = P/(1+PC)

Pauline Kergus - Karl Johan Åström

specifications Driving example: Cruise control Design trade-offs

Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequal Internal stability

Performance specifications

Design trade-offs

- Effect on noise sensitivity: $T_{n \rightarrow u} = -\frac{C}{1+PC}$
- Effect on the command: $T_{r \rightarrow u} = \frac{c}{1 + PC} \rightarrow$ Limitations of the actuators!
- Effect on disturbance rejection $T_{r \rightarrow v} = \frac{P}{1 + PC}$
- Effect on robustness

Pauline Kergus - Karl Johan Åström

Driving example: Cruise control Design trade-offs

Expression in the frequency-domain

Fundamenta

limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequal Internal stability

Performance specifications

Expression in the frequency-domain

Stability and robustness: gain margin g_m , phase margin ϕ_m and stability margin s_m (maximum sensitivity $M_s = \frac{1}{s_m}$)

Pauline Kergus - Karl Johan Åström

Performance specifications

Expression in the frequency-domain

Performance specifications

Driving example: Cruise control Design trade-offs

Expression in the frequency-domain

Fundamental limitations

- System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality Internal stability
- **Stability and robustness**: gain margin g_m , phase margin ϕ_m and stability margin s_m (maximum sensitivity $M_s = \frac{1}{s_m}$)
- Performances

Driving example: Cruise control Design trade-offs

Expression in the frequency-domain

Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequa Internal stability

Stability and robustness: gain margin g_m , phase margin ϕ_m and stability margin s_m (maximum sensitivity $M_s = \frac{1}{s_m}$)

Performances

Performance specifications Expression in the frequency-domain

Time-domain: overshoot, rise time, settling time, steady state-error

9/22

Control System Synthesis

09/09/2020 9/22

- Driving example: Cruise control
- Expression in the frequency-domain

System design considerations

UNIVERSITY

Expression in the frequency-domain

Stability and robustness: gain margin q_m , phase margin ϕ_m and stability margin s_m (maximum sensitivity $M_s = \frac{1}{s_m}$)

Performances

- Time-domain: overshoot, rise time, settling time, steady state-error
- Frequency-domain: peak value(s), peak frequency, gain crossover frequency and bandwidth.

Expression in the frequency-domain

Driving example: Cruise control

Expression in the frequency-domain

System design considerations

Stability and robustness: gain margin g_m , phase margin ϕ_m and stability margin s_m (maximum sensitivity $M_s = \frac{1}{s_m}$)

Performances

- Time-domain: overshoot, rise time, settling time, steady state-error
- Frequency-domain: peak value(s), peak frequency, gain crossover frequency and bandwidth.

P (s) =	$\frac{k}{\frac{1}{\omega_0^2}s^2 + \frac{2\xi}{\omega_0}s + 1}$			
$\phi = \mathit{arccos}\xi$				

Property	Value
Steady-state value	k
Rise time	$T_r = e^{\phi/tan\phi}$
Overshoot	$M_{ m p}=e^{-\pi\xi\sqrt{1-\xi^2}}$
Settling time 2%	$T_{s} \sim rac{1}{4 \xi \omega_{0}}$

- Driving example: Cruise control Design trade-offs
- Expression in the frequency-domain

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequa Internal stability

Performance specifications

Expression in the frequency-domain

Stability and robustness: gain margin g_m , phase margin ϕ_m and stability margin s_m (maximum sensitivity $M_s = \frac{1}{s_m}$)

Performances

- Time-domain: overshoot, rise time, settling time, steady state-error
- Frequency-domain: peak value(s), peak frequency, gain crossover frequency and bandwidth.

 10^{2} 10^{0} 10^{-2}

_90

-180 10^{-1}

Pauline Kergus - Karl Johan Åström

(b) Frequency responses Control System Synthesis

 10^{0}

Normalized frequency ω/ω_0

09/09/2020 9/22

 10^{1}

Expression in the frequency-domain

Performance specifications

Driving example: Cruise control Design trade-offs

Expression in the frequency-domain

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality Internal stability

Expression in the frequency-domain

Performance specifications

Driving example: Cruise control Design trade-offs

Expression in the frequency-domain

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequalit Internal stability

$$\mathcal{C}(s) = k_{\mathcal{P}} + rac{k_{\mathcal{P}}}{s} o \mathcal{T}(s) = rac{rac{k_{\mathcal{P}}}{k_i}s+1}{rac{m}{k_i}s^2 + rac{b+k_{\mathcal{P}}}{k_i}s+1}$$

Overshoot < 10%</p>

Expression in the frequency-domain

Performance specifications

- Driving example: Cruise control Design trade-offs
- Expression in the frequency-domain

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequalit Internal stability

- Overshoot < 10%
- $\xi = 0.6$

Expression in the frequency-domain

Performance specifications

- Driving example: Cruise control Design trade-offs
- Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality Internal stability

$$\mathcal{C}(oldsymbol{s})=k_{oldsymbol{
ho}}+rac{k_{oldsymbol{
ho}}}{oldsymbol{s}}oldsymbol{
ho}+1}{rac{m}{k_{oldsymbol{
ho}}}oldsymbol{s}+2}+rac{k_{oldsymbol{
ho}}}{k_{oldsymbol{
ho}}}oldsymbol{s}+1}$$

Expression in the frequency-domain

Performance specifications

- Driving example: Cruise control Design trade-offs
- Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality Internal stability

$$\mathcal{C}(s)=k_{
ho}+rac{k_{
ho}}{s}
ightarrow \mathcal{T}(s)=rac{rac{k_{
ho}}{k_{
ho}}s+1}{rac{m}{k_{
ho}}s^2+rac{b+k_{
ho}}{k_{
ho}}s+1}$$

• Overshoot
$$< 10\%$$

 $\Rightarrow \xi = 0.6$
• Rise time $< 5s$
 $\Rightarrow \omega_0 = 0.7$

Expression in the frequency-domain

Performance specifications

- Driving example: Cruise control Design trade-offs
- Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequalit Internal stability

$$\mathcal{C}(s)=k_{
ho}+rac{k_{
ho}}{s}
ightarrow \mathcal{T}(s)=rac{rac{k_{
ho}}{k_{
ho}}s+1}{rac{m}{k_{
ho}}s^2+rac{b+k_{
ho}}{k_{
ho}}s+1}$$

•
$$\xi = 0.6$$

Rise time
$$<$$
 5s

$$\rightarrow \omega_0 = 0.7$$

■ Steady-state error < 2%

Expression in the frequency-domain

Performance specifications

- Driving example: Cruise control Design trade-offs
- Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequalit Internal stability

$$\mathcal{C}(s) = k_{
ho} + rac{k_{
ho}}{s} o \mathcal{T}(s) = rac{rac{k_{
ho}}{k_{
ho}}s+1}{rac{m}{k_{
ho}}s^2 + rac{b+k_{
ho}}{k_{
ho}}s+1}$$

- Overshoot < 10%</p>
 - $\xi = 0.6$
- Rise time < 5s</p>
- $\rightarrow \omega_0 = 0.7$
- Steady-state error < 2%
- ensured through the integral action

Expression in the frequency-domain

Performance specifications

- Driving example: Cruise control Design trade-offs
- Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequalit Internal stability

$$\mathcal{C}(s)=k_{
ho}+rac{k_{
ho}}{s}
ightarrow \mathcal{T}(s)=rac{rac{k_{
ho}}{k_{
ho}}s+1}{rac{m}{k_{
ho}}s^{2}+rac{b+k_{
ho}}{k_{
ho}}s+1}$$

- Overshoot < 10%</p>
 - $\xi = 0.6$
- Rise time < 5s</p>
- $\rightarrow \omega_0 = 0.7$
- Steady-state error < 2%
- ightarrow ensured through the integral action
 - Finally: $k_p = 3600$ and $k_i = 1450$

Expression in the frequency-domain

Driving example: Cruise control Design trade-offs

Expression in the frequency-domain

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequali Internal stability

$$C(s)=k_p+rac{k_p}{s}
ightarrow T(s)=rac{rac{k_p}{k_i}s+1}{rac{m}{k_i}s^2+rac{b+k_p}{k_i}s+1}$$

Overshoot < 10%

 ξ = 0.6

Rise time
$$< 5s$$

$$\rightarrow \omega_0 = 0.7$$

- Steady-state error < 2%
- → ensured through the integral action Finally: $k_p = 3600$ and $k_i = 1450$

Figure: Reference tracking

Pauline Kergus - Karl Johan Åström

Expression in the frequency-domain

Performance specifications

Driving example: Cruise control Design trade-offs

Expression in the frequency-domain

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequali Internal stability

$$C(s)=k_{
ho}+rac{k_{
ho}}{s}
ightarrow T(s)=rac{rac{k_{
ho}}{k_{i}}s+1}{rac{m}{k_{i}}s^{2}+rac{b+k_{
ho}}{k_{i}}s+1}$$

Overshoot < 10%
 → *ξ* = 0.6

Rise time
$$< 5s$$

$$\rightarrow \omega_0 = 0.7$$

- Steady-state error < 2%
- → ensured through the integral action Finally: $k_p = 3600$ and $k_i = 1450$

Figure: Disturbance rejection

Pauline Kergus - Karl Johan Åström

Expression in the frequency-domain

Performance specifications

Driving example: Cruise control Design trade-offs

Expression in the frequency-domain

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality Internal stability

Pauline Kergus - Karl Johan Åström

Performance specifications Loopshaping

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequalit Internal stability

Focus on the open-loop transfer function $L = PC \rightarrow C = L/P$ of high order

Performance specifications Loopshaping

- Performance specifications
- Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequal Internal stability

- Design technique in the frequency-domain
- Focus on the open-loop transfer function $L = PC \rightarrow C = L/P$ of high order

Driving ex	ample:	Cruise	control
Design tra	de-offs		
Expressio	n in the	freque	ncy-domain
Loopshap	ng		

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequa Internal stability

Performance specifications

- Driving example: Cruise control
- Design trade-offs
- Expression in the frequency-domain
- Loopshaping

2 Fundamental limitations

- System design considerations
- Sensitivity minimization
- Bode's integral formula
- Gain crossover frequency inequality
- Internal stability

System design considerations

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations

Sensitivity minimization Bode's integral formula Gain crossover frequency inequalit Internal stability

impact of system design on feedback possibilities

Fundamental limitations

System design considerations

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequal

- impact of system design on feedback possibilities
- \blacksquare unstable system \rightarrow needs a fast controller (bandwidth of sensors and actuators)

Fundamental limitations

System design considerations

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

- System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality Internal stability
- impact of system design on feedback possibilities
- unstable system \rightarrow needs a fast controller (bandwidth of sensors and actuators)
- systems with time-delays \rightarrow impossible to take fast control actions

Driving example: Cruise control

System design considerations

Fundamental limitations

System design considerations

impact of system design on feedback possibilities

- unstable system \rightarrow needs a fast controller (bandwidth of sensors and actuators)
- systems with time-delays ightarrow impossible to take fast control actions
- limitations often expressed by conditions on the poles and zeros of the system

System design considerations

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

- System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality Internal stability
- impact of system design on feedback possibilities
- unstable system \rightarrow needs a fast controller (bandwidth of sensors and actuators)
- systems with time-delays ightarrow impossible to take fast control actions
- → limitations often expressed by conditions on the poles and zeros of the system
- Can you rework on system design while doing control?

Sensitivity minimization

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations

Sensitivity minimization

Bode's integral formula Gain crossover frequency inequality Internal stability

in crossover frequ

$$S = \frac{1}{1 + PC}$$

S is the transfer between r and the error ε

Sensitivity minimization

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations

Sensitivity minimization Bode's integral formula

Gain crossover frequency ine Internal stability

S is the transfer between *r* and the error ε

Limited overshoot:
$$M_{s} = \max_{\omega} |S(j\omega)|_{\infty} \leq \gamma$$

01851

Sensitivity minimization

Driving example: Cruise control Expression in the frequency-domain

System design considerations

Sensitivity minimization

- S is the transfer between r and the error ε
 - Limited overshoot: $M_s = \max_{\omega} |S(j\omega)|_{\infty} \leq \gamma$
- $M_{\rm s}$ is also a measure of robustness \rightarrow

 $S = \frac{1}{1 \perp PC}$

Sensitivity minimization

Driving example: Cruise control

System design considerations

Sensitivity minimization

UNIVERSITY

$$S = \frac{1}{1 + PC}$$

- S is the transfer between r and the error ε
- Limited overshoot: $M_s = \max_{\omega} |S(j\omega)|_{\infty} \leq \gamma$
- $M_{\rm s}$ is also a measure of robustness \rightarrow
 - **Disturbance attenuation** when $|S(\gamma \omega)|_{\infty} \leq 1$

Sensitivity minimization

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations

Sensitivity minimization

Bode's integral formula Gain crossover frequency inequality Internal stability

$$S = \frac{1}{1 + PC}$$

- S is the transfer between r and the error ε
- Limited overshoot: $M_s = max_\omega |S(\jmath\omega)|_\infty \leq \gamma$
- $\rightarrow M_s$ is also a measure of robustness
- $ightarrow \,\, {f Disturbance attenuation when } \left| {\cal S}(\jmath\omega)
 ight|_\infty \leq 1$
- Low static error: $\min_{S} \max_{\omega \in (0,\omega_c)} |S(j\omega)|$

Sensitivity minimization

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations

Sensitivity minimization

Bode's integral formula Gain crossover frequency inequality Internal stability

$$S = \frac{1}{1 + PC}$$

- S is the transfer between r and the error ε
- Limited overshoot: $M_s = max_\omega |S(\jmath\omega)|_\infty \leq \gamma$
- $\rightarrow M_s$ is also a measure of robustness
- $ightarrow \,\, {f Disturbance attenuation when } \left| {\cal S}(\jmath\omega)
 ight|_{\infty} \leq 1$
- Low static error: $\min_{\mathcal{S}} \max_{\omega \in (0,\omega_c)} |\mathcal{S}(j\omega)|$
 - ω_c is the cutoff frequency

Sensitivity minimization

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations

Sensitivity minimization

Bode's integral formula Gain crossover frequency inequality Internal stability

$$S = \frac{1}{1 + PC}$$

- S is the transfer between r and the error ε
- Limited overshoot: $M_s = max_\omega |S(j\omega)|_\infty \leq \gamma$
- $\rightarrow M_s$ is also a measure of robustness
- $ightarrow \,\, {f Disturbance attenuation when } \left| {\cal S}(\jmath\omega)
 ight|_\infty \leq 1$
- Low static error: $\min_{S} \max_{\omega \in (0,\omega_c)} |S(j\omega)|$
 - ω_c is the cutoff frequency
 - $\square \lim_{t \to \infty} \epsilon(t) = \lim_{s \to 0} S(s)$

Bode's integral formula

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization

Bode's integral formula

Gain crossover frequency inequality Internal stability

The sensitivity function cannot be made small over a wide frequency range.

Bode's integral formula (invariant)

Bode's integral formula

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization

Bode's integral formula

Gain crossover frequency inequality internal stability

The sensitivity function cannot be made small over a wide frequency range.

Bode's integral formula (invariant)

reducing the sensitivity at one frequency increases it at another

Bode's integral formula

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization

Bode's integral formula

Bain crossover frequency inequality nternal stability

The sensitivity function cannot be made small over a wide frequency range.

Bode's integral formula (invariant)

- reducing the sensitivity at one frequency increases it at another
- Right Half-Plane (RHP) poles in the process makes it worse

Bode's integral formula

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization

Bode's integral formula

Bain crossover frequency inequality nternal stability

The sensitivity function cannot be made small over a wide frequency range.

- Bode's integral formula (invariant)
- reducing the sensitivity at one frequency increases it at another
- Right Half-Plane (RHP) poles in the process makes it worse
- Control design is always a compromise

Bode's integral formula

Driving example: Cruise control Expression in the frequency-domain

System design considerations Sensitivity minimization

Bode's integral formula

For an internally stable closed loop system, if $\lim_{s\to\infty} sL(s) = 0$:

where p_k are the RHP poles of the open-loop L.

Bode's integral formula

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization

Bode's integral formula

Gain crossover frequency inequality Internal stability

$$\int_{0}^{\infty} \log(|\mathcal{S}(\jmath\omega)|) d\omega = \pi \sum \mathcal{p}_k$$

where p_k are the RHP poles of the open-loop L.

Pauline Kergus - Karl Johan Åström

Bode's integral formula

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization

Bode's integral formula

Gain crossover frequency inequality Internal stability

15.1* SIG

For an internally stable closed loop system, if $\underset{s
ightarrow \infty}{lim} sL(s) =$ 0:

$$\int_{0}^{\infty} \log(|\mathcal{S}(\jmath\omega)|) d\omega = \pi \sum \mathcal{p}_k$$

where p_k are the RHP poles of the open-loop L. Similarly: $\int_{-\infty}^{\infty} \frac{\log(|T(j\omega)|)}{d\omega} d\omega = \pi \sum_{k=1}^{\infty} \frac{1}{2}$

$$\int_0 \qquad \omega^2 \qquad \omega^2 = \pi \sum$$

where z_i are the RHP zeros of the open-loop L.

Gain crossover frequency inequality

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula

Gain crossover frequency inequality

Internal stability

$$egin{aligned} P(s) &= P_{mp}(s)P_{nmp}(s) \ & |P_{mp}(\jmath\omega)| = 1 \end{aligned}$$

$$P(s) = \frac{s-2}{(s+1)(s-1)} = \frac{s+2}{(s+1)^2} \frac{(s-2)(s+1)}{(s+2)(s-1)} = P_{mp}P_{nmp}$$

Pauline Kergus - Karl Johan Åström

Gain crossover frequency inequality

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality

Internal stability

$$egin{aligned} P(s) &= P_{mp}(s)P_{nmp}(s) \ & |P_{mp}(\jmath\omega)| = 1 \end{aligned}$$

$$argL(j\omega_{gc}) = argP_{nmp}(j\omega_{gc}) + argP_{mp}(j\omega_{gc}) + argC(j\omega_{gc}) \ge -\pi + \phi_m$$

 ϕ_m is the desired phase margin

Pauline Kergus - Karl Johan Åström

Pauline Kergus - Karl Johan Åström

Fundamental limitations Gain crossover frequency inequality

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality Internal stability

$$egin{aligned} P(s) &= P_{mp}(s)P_{nmp}(s) \ & |P_{mp}(arphi\omega)| = 1 \end{aligned}$$

 $argL(j\omega_{gc}) = argP_{nmp}(j\omega_{gc}) + argP_{mp}(j\omega_{gc}) + argC(j\omega_{gc}) \ge -\pi + \phi_m$ ϕ_m is the desired phase margin

Assuming that *C* has no poles or zeros in the RHP:

$$arg P_{mp}(\jmath \omega_{gc}) + arg \mathcal{C}(\jmath \omega_{gc}) = slope * rac{\pi}{2}$$

Fundamental limitations

Gain crossover frequency inequality

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality Internal stability

$$egin{aligned} P(s) &= P_{mp}(s)P_{nmp}(s) \ &|P_{mp}(\jmath\omega)| = 1 \end{aligned}$$

 $argL(j\omega_{gc}) = argP_{nmp}(j\omega_{gc}) + argP_{mp}(j\omega_{gc}) + argC(j\omega_{gc}) \ge -\pi + \phi_m$ ϕ_m is the desired phase margin

$$\textit{argP}_{\textit{nmp}}(\jmath\omega_{\textit{gc}}) + \textit{slope} * rac{\pi}{2} \geq -\pi + \phi_{\textit{m}}$$

- \rightarrow there is a trade-off between phase margin and speed
- Fast RHP poles \rightarrow larger ω_{gc}
- Slow RHP zeros \rightarrow lower ω_{gc}

Internal stability

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality Internal stability

Internal stability = stability of the gang of four

Fundamental limitations

Internal stability

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

- System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequali Internal stability
- Internal stability = stability of the gang of four
- S stable and no compensation of instabilities in the open-loop

Fundamental limitations

Internal stability

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

- System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequalit Internal stability
- Internal stability = stability of the gang of four
- S stable and no compensation of instabilities in the open-loop

$$\left\{\begin{array}{c}T(p_k)=0\\S(p_k)=1\end{array}\right\}\left\{\begin{array}{c}T(z_i)=1\\S(z_i)=0\end{array}\right.$$

Internal stability

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequa Internal stability

- Internal stability = stability of the gang of four
- S stable and no compensation of instabilities in the open-loop

$$\begin{cases} T(p_k)=0 \\ S(p_k)=1 \end{cases} \begin{cases} T(z_i)=1 \\ S(z_i)=0 \end{cases}$$

Maximum modulus principle: if *G* is bounded and analytic in the RHP:

$$\max_{\omega \in \mathbb{R}} |G(\jmath \omega)| = \max_{\mathsf{Re}(s) \geq 0} |G(s)|$$

Maximum modulus principle

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequa Internal stability

(a) Requirements for sensitivity

(b) Requirements for complementary sensitivity

$$S_r(s) = rac{M_s s}{s+a}$$
 $T_r(s) = rac{M_t b}{s+b}$

Pauline Kergus - Karl Johan Åström

Maximum modulus principle

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequ Internal stability

LUND UNIVERSITY

(a) Requirements for sensitivity

(b) Requirements for complementary sensitivity

$$S_r(s) = rac{M_s s}{s+a} \qquad T_r(s) = rac{M_t b}{s+b}$$

For the sensitivity:

$$1 \geq rac{|S(\jmath\omega)|}{|S_r(\jmath\omega)|} \geq rac{|S(z)|}{|S_r(z)|} = rac{z+a}{M_s z}$$

Pauline Kergus - Karl Johan Åström

Maximum modulus principle

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequ

Internal stability

(a) Requirements for sensitivity

£,

(b) Requirements for complementary sensitivity

$$S_r(s) = rac{M_s s}{s+a}$$
 $T_r(s) = rac{M_t b}{s+b}$

For the sensitivity:

$$1 \geq \frac{|S(\jmath\omega)|}{|S_r(\jmath\omega)|} \geq \frac{|S(z)|}{|S_r(z)|} = \frac{z+a}{M_s z}$$

$$a \leq z(M_s - 1)
ightarrow \omega_{sc} \leq z \sqrt{rac{M_s - 1}{M_s + 1}}$$

Pauline Kergus - Karl Johan Åström

Conclusions

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality Internal stability

 \blacksquare The different specifications are linked through the gang of four \rightarrow trade-offs

Conclusions

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality Internal stability

different criterias in time-domain and frequency-domain

Conclusions

Performance specifications

Driving example: Cruise control Design trade-offs Expression in the frequency-domain Loopshaping

Fundamental limitations

System design considerations Sensitivity minimization Bode's integral formula Gain crossover frequency inequality Internal stability

- The different specifications are linked through the gang of four ightarrow trade-offs
- different criterias in time-domain and frequency-domain
- limitations due to the RHP poles and zeros and time-delays of the process