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Two tools

Nyquist plot

open-loop L = PC

stability criteria

margins

Bode plot

closed-loop

performances of the Gang of Four
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Driving example: Cruise control

Follow a reference signal: the servo problem

Act on T = V (s)
R(s) =

PC
1+PC

In time-domain, we want:

Rise time < 5s

Overshoot < 10%

Steady-state error < 2%
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Figure: Step response of the system to u = 500N.
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Follow a reference signal: the servo problem

Act on T = V (s)
R(s) =

PC
1+PC

C(s) = kp

T (s) =
kp

ms + b + kp
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Figure: Step responses of the closed-loop for different
kp.
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Effect on noise sensitivity: Tn→u = − C
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Stability and robustness: gain margin gm, phase margin φm and stability
margin sm (maximum sensitivity Ms = 1

sm
)

Performances
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Stability and robustness: gain margin gm, phase margin φm and stability
margin sm (maximum sensitivity Ms = 1

sm
)

Performances
Time-domain: overshoot, rise time, settling time, steady state-error
Frequency-domain: peak value(s), peak frequency, gain crossover frequency
and bandwidth.

P(s) =
k

1
ω2

0
s2 + 2ξ

ω0
s + 1

φ = arccosξ

Property Value
Steady-state value k
Rise time Tr = eφ/tanφ

Overshoot Mp = e−πξ
√

1−ξ2

Settling time 2% Ts ∼ 1
4ξω0
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C(s) = kp +
kp
s → T (s) =

kp
ki

s+1

m
ki

s2+
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ki
s+1

Overshoot < 10%

→ ξ = 0.6

Rise time < 5s

→ ω0 = 0.7

Steady-state error < 2%

→ ensured through the integral action

Finally: kp = 3600 and ki = 1450
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Pauline Kergus - Karl Johan Åström Control System Synthesis 09/09/2020 11/22



Performance
specifications
Driving example: Cruise control

Design trade-offs

Expression in the frequency-domain

Loopshaping

Fundamental
limitations
System design considerations

Sensitivity minimization

Bode’s integral formula

Gain crossover frequency inequality

Internal stability

Performance specifications
Expression in the frequency-domain

C(s) = kp +
kp
s → T (s) =

kp
ki

s+1

m
ki

s2+
b+kp

ki
s+1

Overshoot < 10%

→ ξ = 0.6

Rise time < 5s

→ ω0 = 0.7

Steady-state error < 2%

→ ensured through the integral action

Finally: kp = 3600 and ki = 1450
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Pauline Kergus - Karl Johan Åström Control System Synthesis 09/09/2020 11/22



Performance
specifications
Driving example: Cruise control

Design trade-offs

Expression in the frequency-domain

Loopshaping

Fundamental
limitations
System design considerations

Sensitivity minimization

Bode’s integral formula

Gain crossover frequency inequality

Internal stability

Performance specifications
Expression in the frequency-domain

C(s) = kp +
kp
s → T (s) =

kp
ki

s+1

m
ki

s2+
b+kp

ki
s+1

Overshoot < 10%

→ ξ = 0.6

Rise time < 5s

→ ω0 = 0.7

Steady-state error < 2%

→ ensured through the integral action

Finally: kp = 3600 and ki = 1450
0 2 4 6 8 10 12 14

-2

-1

0
10-4

Figure: Disturbance rejection
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Focus on the open-loop transfer function L = PC → C = L/P of high order
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impact of system design on feedback possibilties

unstable system→ needs a fast controller (bandwidth of sensors and
actuators)

systems with time-delays→ impossible to take fast control actions

→ limitations often expressed by conditions on the poles and zeros of the
system

Can you rework on system design while doing control?
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S =
1

1 + PC

S is the transfer between r and the error ε

Limited overshoot: Ms = maxω |S(ω)|∞ ≤ γ
→ Ms is also a measure of robustness

→ Disturbance attenuation when |S(ω)|∞ ≤ 1
Low static error: min

S
max

ω∈(0,ωc)
|S(ω)|

ωc is the cutoff frequency
lim

t→∞
ε(t) = lim

s→0
S(s)
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Pauline Kergus - Karl Johan Åström Control System Synthesis 09/09/2020 16/22



Performance
specifications
Driving example: Cruise control

Design trade-offs

Expression in the frequency-domain

Loopshaping

Fundamental
limitations
System design considerations

Sensitivity minimization

Bode’s integral formula

Gain crossover frequency inequality

Internal stability

Fundamental limitations
Sensitivity minimization

S =
1

1 + PC

S is the transfer between r and the error ε

Limited overshoot: Ms = maxω |S(ω)|∞ ≤ γ
→ Ms is also a measure of robustness

→ Disturbance attenuation when |S(ω)|∞ ≤ 1
Low static error: min

S
max

ω∈(0,ωc)
|S(ω)|

ωc is the cutoff frequency
lim

t→∞
ε(t) = lim

s→0
S(s)
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Bode’s integral formula

For an internally stable closed loop system, if lim
s→∞

sL(s) = 0:∫ ∞
0

log(|S(ω)|)dω = π
∑

pk

where pk are the RHP poles of the open-loop L.
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Bode’s integral formula

For an internally stable closed loop system, if lim
s→∞

sL(s) = 0:∫ ∞
0

log(|S(ω)|)dω = π
∑

pk

where pk are the RHP poles of the open-loop L.
Similarly: ∫ ∞

0

log(|T (ω)|)
ω2 dω = π

∑ 1
zi

where zi are the RHP zeros of the open-loop L.
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Gain crossover frequency inequality

P(s) = Pmp(s)Pnmp(s)

|Pmp(ω)| = 1

P(s) =
s − 2

(s + 1)(s − 1)
=

s + 2
(s + 1)2

(s − 2)(s + 1)
(s + 2)(s − 1)

= PmpPnmp
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P(s) = Pmp(s)Pnmp(s)

|Pmp(ω)| = 1

argL(ωgc) = argPnmp(ωgc) + argPmp(ωgc) + argC(ωgc) ≥ −π + φm

φm is the desired phase margin
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P(s) = Pmp(s)Pnmp(s)

|Pmp(ω)| = 1

argL(ωgc) = argPnmp(ωgc) + argPmp(ωgc) + argC(ωgc) ≥ −π + φm

φm is the desired phase margin

Assuming that C has no poles or zeros in the RHP:

argPmp(ωgc) + argC(ωgc) = slope ∗ π
2
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P(s) = Pmp(s)Pnmp(s)

|Pmp(ω)| = 1

argL(ωgc) = argPnmp(ωgc) + argPmp(ωgc) + argC(ωgc) ≥ −π + φm

φm is the desired phase margin

argPnmp(ωgc) + slope ∗ π
2
≥ −π + φm

→ there is a trade-off between phase margin and speed

Fast RHP poles→ larger ωgc

Slow RHP zeros→ lower ωgc
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Internal stability

Internal stability = stability of the gang of four

S stable and no compensation of instabilities in the open-loop
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Internal stability

Internal stability = stability of the gang of four

S stable and no compensation of instabilities in the open-loop{
T (pk)=0
S(pk)=1

{
T (zi)=1
S(zi)=0

Maximum modulus principle: if G is bounded and analytic in the RHP:

max
ω∈R
|G(ω)| = max

Re(s)≥0
|G(s)|
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Sr (s) =
Mss

s + a
Tr (s) =

Mtb
s + b
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Mss

s + a
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Mtb
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For the sensitivity:

1 ≥ |S(ω)|
|Sr (ω)|

≥ |S(z)|
|Sr (z)|

=
z + a
Msz
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For the sensitivity:

1 ≥ |S(ω)|
|Sr (ω)|

≥ |S(z)|
|Sr (z)|

=
z + a
Msz

a ≤ z(Ms − 1)→ ωsc ≤ z

√
Ms − 1
Ms + 1
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