

Representation of feedback systems

Block diagrams System description

Feedback fundamental

- Static analysis Design issues
- The Gang of For
- Stability and Nyquist plots
- Performances and Bode plo

About feedforward

Conclusions

- 1 Introduction
- 2 Fundamentals: problem formulation
 - System representation and feedback basics
 - Specifications and performance limitations
- 3 Design techniques

Representation of feedback systems

Block diagrams System description

Feedback fundamenta

Static analysis

Design issues

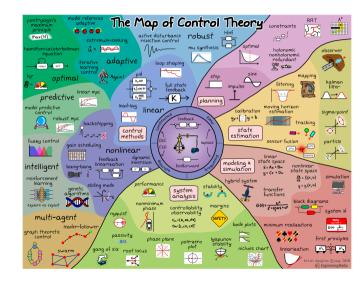
The Gang of Four

Stability and Nyquist plots

Performances and Bode plots

About feedforward

Conclusions



Content overview

Representation of feedback systems

Block diagrams System description

Feedback fundamental

- Static analysi
- Design issues
- The Gang of Fou
- Stability and Nyquist plots

About feedforward

Conclusions

Representation of feedback systems

- Block diagrams
- System description

Feedback fundamentals

- Static analysis
- Design issues
- The Gang of Four
- Stability and Nyquist plots
- Performances and Bode plots
- 3 About feedforward

4 Conclusions

Pauline Kergus - Karl Johan Åström

Representation of feedback systems Block diagrams

Representation of feedback systems Block diagrams

System description

Feedback fundamental

- Static analysis
- Design issues
- The Gang of Four
- Stability and Nyquist plots

Performances and Bode plots

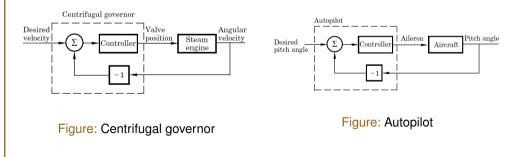
About feedforward

Conclusions

graphical tool, essential due to the multidisciplinary aspect of control

- emphasize flow information and hide technological details
- causality

Two very different systems



Pauline Kergus - Karl Johan Åström

LUND UNIVERSITY

Representation of feedback systems Block diagrams

Representation of feedback systems Block diagrams

System description

Feedback fundamentals

Static analysis

Design issues

The Gang of Four

Stability and Nyquist plots

About feedforward

Conclusions

graphical tool, essential due to the multidisciplinary aspect of control emphasize flow information and hide technological details

causality

Two very different systems, one block diagram!

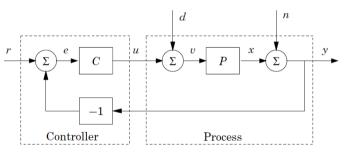


Figure: Generic problem

Pauline Kergus - Karl Johan Åström

Representation of feedback systems System description

Representation of feedback systems Block diagrams

Feedback fundamentals

- Static analysis Design issues
- The Gang of Fou
- Stability and Nyquist plots
- Performances and Bode plo

About feedforward

Conclusions

- need to describe the process to be controlled
- model-based/data-driven design
- importance of LTI systems = linear and time-invariant
 - homogeneity: g(au) = ag(u)
 - superposition: $g(u_1 + u_2) = g(u_1) + g(u_2)$
 - time-invariance: g(u(t T)) = y(t T)
 - allowed operations: ax(t), $\int x(t)dt$, $\frac{dx}{dt}$, $x_1(t) \pm x_2(t)$
- ightarrow do not represent most real-world systems
- $\rightarrow\,$ "Linear systems are important because we can solve them", Richard Feynman
- ightarrow possibility to approximate a real-world system as LTI over a region

Representation of feedback systems System description

Representation of feedback systems

System description

Feedback fundamentals

Static analysis

Design issues

The Gang of Four

Stability and Nyquist plots

Performances and Bode plots

About feedforward

Conclusions

Time-domain

State-space model

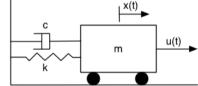
$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

Frequency-domain

Transfer function

$$G(s) = \frac{b_1 s^{n-1} + \dots + b_{n-1} s + b_n}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

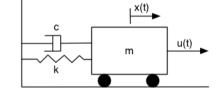
Representation of feedback systems System description



$$m\ddot{x}(t) + c\dot{x} + kx(t) - u(t) = 0$$

Pauline Kergus - Karl Johan Åström

Representation of feedback systems System description



$$X = \begin{pmatrix} x \\ \dot{x} \end{pmatrix}$$
$$\dot{X} = \begin{pmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{pmatrix} X + \frac{1}{m}u$$

$$m\ddot{x}(t)+c\dot{x}+kx(t)-u(t)=0$$

Pauline Kergus - Karl Johan Åström

Representation of feedback systems

Time domain

Frequency domain

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} d\omega \xleftarrow{\text{Fourier transform}}_{\text{Inverse Fourier transform}} X(\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$$

Control System Synthesis

Block diagrams System description

Representation of feedback systems

Static analysis

Design issues

The Gang of Four

Performances and Bode plots

About feedforward

Representation of feedback systems System description

Time domain

Frequency domain

 $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} d\omega \xleftarrow{\text{Fourier transform}}_{\text{Inverse Fourier transform}} X(\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$

The Laplace transform and the s-plane

 $e^{st} = e^{(\sigma+\jmath\omega)t} = e^{\sigma t}e^{\jmath\omega t}$

Time domain s-plane $x(t) \xrightarrow{} Laplace transform X(s) = \int_0^{+\infty} x(t) e^{-st} dt$

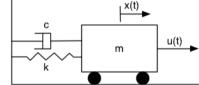
Control System Synthesis

feedback systems Block diagrams

About feedforward

System description

Representation of feedback systems System description



$$m\ddot{x}(t) + c\dot{x} + kx(t) - u(t) = 0$$

Pauline Kergus - Karl Johan Åström

Representation of feedback systems System description

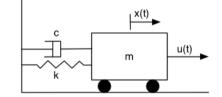
System description

Feedback fundamental

- Static analysis
- Design issues
- The Gang of Four
- Stability and Nyquist plots
- Performances and Bode plots

About feedforward

Conclusions



$$m\ddot{x}(t)+c\dot{x}+kx(t)-u(t)=0$$

$$\mathcal{L}(x) = X(s)$$

 $\mathcal{L}(\dot{x}) = sX(s) - x(0)$

L

Pauline Kergus - Karl Johan Åström

Representation of feedback systems System description

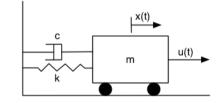
Feedback

fundamentals

- Static analysis
- Design issues
- The Gang of Four
- Stability and Nyquist plots
- Performances and Bode plots

About feedforward

Conclusions



$$m\ddot{x}(t)+c\dot{x}+kx(t)-u(t)=0$$

$$\mathcal{L}(x) = X(s)$$

 $\mathcal{L}(\dot{x}) = sX(s) - x(0)$

$$ms^2X(s)+csX(s)+kX(s)-U(s)=0$$

 $G(s)=rac{X(s)}{U(s)}=rac{1}{ms^2+cs+k}$

Pauline Kergus - Karl Johan Åström

Representation of feedback systems Other characterization of LTI systems

Impulse response

Representation of feedback systems

About feedforward

UNIVERSITY

Block diagrams System description

$$\delta(t) = \begin{cases} +\infty & t = 0 \\ 0 & t \neq 0 \end{cases} \text{ and } \int_{-\infty}^{+\infty} \delta(t) dt = 1$$

$$y(t) = (u * h)(t) = \int_{-\infty}^{+\infty} u(t-\tau)h(\tau)d\tau$$

 $\mathcal{L}(\delta(t)) = 1 \rightarrow$ the transfer function is the Laplace transform of the impulse response

Representation of feedback systems Other characterization of LTI systems

feedback systems Block diagrams System description

Impulse response

$$\delta(t) = \begin{cases} +\infty & t = 0 \\ 0 & t \neq 0 \end{cases} \text{ and } \int_{-\infty}^{+\infty} \delta(t) dt = 1$$

$$y(t) = (u * h)(t) = \int_{-\infty}^{+\infty} u(t-\tau)h(\tau)d\tau$$

 $\mathcal{L}(\delta(t)) = 1 \rightarrow$ the transfer function is the Laplace transform of the impulse response

2 Frequency response = $\{G(j\omega)\}$ A system's frequency response is the Fourier transform of its impulse response

Control System Synthesis

About feedforward

Representation of feedback systems

Block diagrams System description

Feedback fundamentals

- Static analysis
- Design issues
- Stability and Nyquist plots
- Performances and Bode plo
- About feedforward

Conclusions

Representation of feedback systems

- Block diagrams
- System description

2 Feedback fundamentals

- Static analysis
- Design issues
- The Gang of Four
- Stability and Nyquist plots
- Performances and Bode plots
- 3 About feedforward

4 Conclusions

Static analysis

Representation of feedback systems

Block diagrams System description

Feedback

Static analysis

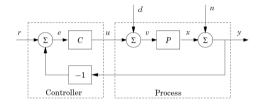
- Design issues
- The Gang of Four
- Stability and Nyquist plots
- Performances and Bode plots

About feedforward

Conclusions

LUND UNIVERSITY

→ Static model = instantaneous input-output relation



Static analysis

Representation of feedback systems

Block diagrams System description

Feedback fundamentals

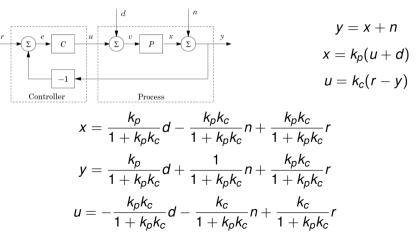
Static analysis

- Design issues
- The Gang of Fou
- Stability and Nyquist plots
- Performances and Bode plots

About feedforward

Conclusions

→ Static model = instantaneous input-output relation



Pauline Kergus - Karl Johan Åström

disturbance rejection (r = 0 and n = 0): $x = \frac{k_p}{1 + k_0 k_c} d$

Static analysis

Representation of feedback systems

Block diagrams System description

Feedback fundamentals

Static analysis

Design issues

The Gang of Four

Stability and Nyquist plots

Performances and Bode plots

About feedforward

Conclusions

Static analysis

Representation of feedback systems

System description

Feedback fundamentals

Static analysis

- Design issues
- The Gang of Four
- Stability and Nyquist plots
- Performances and Bode plots

About feedforward

Conclusions

disturbance rejection (
$$r = 0$$
 and $n = 0$): $x = \frac{k_p}{1 + k_p k_c} d$

reference tracking (
$$d = 0$$
 and $n = 0$): $x = \frac{k_{\rho}k_c}{1+k_{\rho}k_c}r$

$= \operatorname{distarbance} \operatorname{rejection} (d - 1)$

System description Feedback fundamentals

Representation of feedback systems

Static analysis

Design issues

The Gang of Four

Stability and Nyquist plots

r enernancee and bode prot

About feedforward

Conclusions

Feedback fundamentals

Static analysis

disturbance rejection (
$$r = 0$$
 and $n = 0$): $x = \frac{k_p}{1 + k_p k_c} d$

• reference tracking (d = 0 and n = 0): $x = \frac{k_{\rho}k_c}{1+k_{\rho}k_c}r$

• robustness to process variations (d = 0 and n = 0): $\frac{dx}{dk_{\rho}} = \frac{x}{k_{\rho}} \frac{1}{1 + k_{\rho}k_{c}}$

• reference tracking (d = 0 and n = 0): $x = \frac{k_{\rho}k_{c}}{1+k_{c}k_{c}}r$

robustness to process variations (d = 0 and n = 0): $\frac{dx}{dk_0} = \frac{x}{k_0} \frac{1}{1 + k_0 k_c}$ The loop gain $k_{p}k_{c}$ should be high

disturbance rejection (r = 0 and n = 0): $x = \frac{k_p}{1+k_rk_r}d$

UNIVERSITY

Block diagrams System description

Static analysis

About feedforward

feedback systems

Feedback fundamentals

Static analysis

Static analysis

Representation of feedback systems Block diagrams

Feedback fundamentals

Static analysis

- Design issues
- The Gang of Four
- Performances and Bode plot

About feedforward

Conclusions

disturbance rejection (r = 0 and n = 0): x = kp/(1+kpkc)d
reference tracking (d = 0 and n = 0): x = kp/kc/(1+kpkc)r
robustness to process variations (d = 0 and n = 0): dx/(dkp) = x/(kp) 1/(1+kp/kc)
→ The loop gain kp/kc should be high

Obtaining a linear behaviour through feedback: y = f(u) and $u = k_c(r - y)$

$$y+\frac{1}{k_c}f^{-1}(y)=r$$

Static analysis

Feedback fundamentals

 \rightarrow The loop gain $k_{\rho}k_{c}$ should be high

disturbance rejection (r = 0 and n = 0): $x = \frac{k_p}{1+k_rk_r}d$

• reference tracking (d = 0 and n = 0): $x = \frac{k_p k_c}{1 + k_r k_r}$

This does not consider the dynamics of the system and the controller!

Obtaining a linear behaviour through feedback: y = f(u) and $u = k_c(r - y)$

 $y + \frac{1}{k_{\tau}}f^{-1}(y) = r$

robustness to process variations (d = 0 and n = 0): $\frac{dx}{dk_0} = \frac{x}{k_0} \frac{1}{1+k_0k_0}$

Pauline Kergus - Karl Johan Åström

Control System Synthesis

feedback systems

System description

Static analysis

Lund UNIVERSITY

feedback systems Block diagrams System description

Static analysis

Feedback fundamentals

Static analysis

- disturbance rejection (r = 0 and n = 0): $x = \frac{k_p}{1 + k_p k_c} d$
 - reference tracking (d = 0 and n = 0): $x = \frac{k_{\rho}k_c}{1+k_{\rho}k_c}r$
 - robustness to process variations (d = 0 and n = 0): $\frac{dx}{dk_p} = \frac{x}{k_p} \frac{1}{1 + k_p k_c}$ \rightarrow The loop gain $k_p k_c$ should be high
 - Obtaining a linear behaviour through feedback: y = f(u) and $u = k_c(r y)$

$$y+\frac{1}{k_c}f^{-1}(y)=r$$

This does not consider the dynamics of the system and the controller!High loop gains lead to instability

Pauline Kergus - Karl Johan Åström

Design issues

Stability

Representation of feedback systems

Block diagrams System description

Feedback fundamental

Static analysis

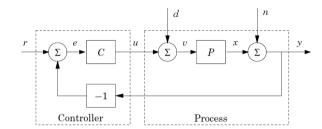
Design issues

The Gang of Four

Stability and Nyquist plots Performances and Bode plots

About feedforward

Conclusions



Design issues

Representation of feedback systems

Block diagrams System description

Feedback fundamental

Static analysis

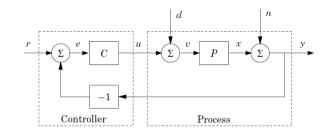
Design issues

The Gang of Four Stability and Nyquist plo

Performances and Bode plots

About feedforward

Conclusions



Stability

Reference tracking

Design issues

Representation of feedback systems

Block diagrams System description

Feedback fundamental

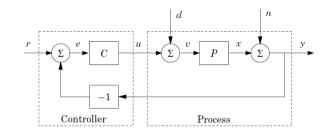
Static analysis

Design issues

The Gang of Four Stability and Nyquist plots Performances and Bode plots

About feedforward

Conclusions



Stability

- Reference tracking
- Disturbance rejection

Design issues

Representation of feedback systems

Block diagrams System description

Feedback fundamental

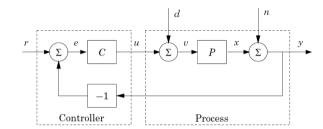
Static analysis

Design issues

The Gang of Four Stability and Nyquist plot

About feedforward

Conclusions



- Stability
- Reference tracking
- Disturbance rejection
- Noise attenuation

Pauline Kergus - Karl Johan Åström

Design issues

Representation of feedback systems

Block diagrams System description

Feedback fundamental

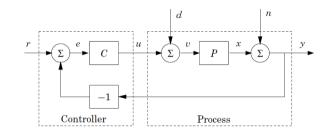
Static analysis

Design issues

The Gang of Four Stability and Nyquist plo

About feedforward

Conclusions



- Stability
- Reference tracking
- Disturbance rejection
- Noise attenuation
- Robustness to process variations

Pauline Kergus - Karl Johan Åström

The Gang of Four

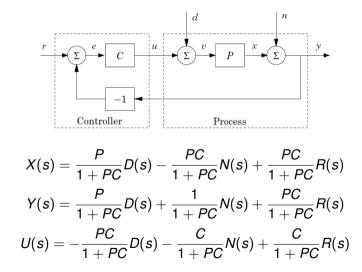
Static analysis Design issues

The Gang of Four

Stability and Nyquist plots Performances and Bode plot:

About feedforward

Conclusions



Pauline Kergus - Karl Johan Åström

The Gang of Four

Block diagrams System description

Feedback fundamentals

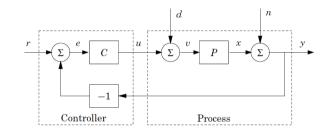
Static analysis Design issues

The Gang of Four

Stability and Nyquist plots Performances and Bode plot:

About feedforward

Conclusions



- The sensitivity function : $S(s) = \frac{1}{1+PC}$
- The complementary sensitivity function : $T(s) = \frac{PC}{1+PC}$
- $\rightarrow S(s) + T(s) = 1$
- **The noise sensitivity function** $\frac{C}{1+PC}$
- The disturbance sensitivity function $\frac{P}{1+PC}$

Pauline Kergus - Karl Johan Åström

Stability and Nyquist plots

Representation of feedback systems

Block diagrams System description

Feedback fundamental

Static analysis

Design issues

The Gang of Four

Stability and Nyquist plots Performances and Bode plot

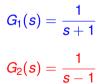
About feedforward

Conclusions

stable unstable 5 Amplitude 2 0 0.5 1 1.5 2 Time

BIBO stability

G(s) stable \iff poles in the LHP (transfer function)



Control System Synthesis

Pauline Kergus - Karl Johan Åström

Stability and Nyquist plots

Representation of feedback systems

Block diagrams System description

Feedback fundamental

Static analysis

Design issues

The Gang of Four

Stability and Nyquist plots Performances and Bode plot

About feedforward

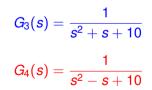
Conclusions

3 stable unstable 2 Amplitude -1 0 2 3 4 5 Time

Pauline Kergus - Karl Johan Åström

BIBO stability

G(s) stable \iff poles in the LHP (transfer function)



Stability and Nyquist plots

Representation of feedback systems

Block diagrams System description

Feedback fundamentals

Static analysis

Design issues

The Gang of For

Stability and Nyquist plots Performances and Bode plots

About feedforward

Conclusions

BIBO stability

G(s) stable \iff poles in the LHP (transfer function) \iff eigenvalues of A in the LHP (state-space model)

feedback systems Block diagrams System description

Stability and Nyquist plots

Feedback fundamentals

Stability and Nyquist plots

BIBO stability

G(s) stable

- \iff poles in the LHP (transfer function)
 - \iff eigenvalues of A in the LHP (state-space model)
 - \iff roots of the characteristic polynomial in the LHP (ODE)

Pauline Kergus - Karl Johan Åström

С

k

Control System Synthesis

09/09/2020 18/26

Feedback fundamentals

x(t)

m

 $m\ddot{x}(t) + c\dot{x} + kx(t) - u(t) = 0$

u(t)

Stability and Nyquist plots

Representation of feedback systems

Block diagrams System description

Feedback fundamenta

- Static analysis
- Design issues
- The Gang of Four

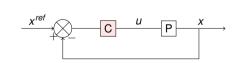
Stability and Nyquist plots Performances and Bode plots

About feedforward

Conclusions

Nyquist criteria

$$L(s) = C(s)P(s)$$



Control System Synthesis

09/09/2020 18/26

Feedback fundamentals

 $P(s) = \frac{1}{ms^2 + cs + k}$

 $C(s) = k_c$

 $H(s) = \frac{k_c}{ms^2 + cs + k + k_c}$

Stability and Nyquist plots

Representation of feedback systems

Block diagrams System description

Feedback fundamental

- Static analysis
- Design issues
- The Gang of Four

Stability and Nyquist plots

Performances and Bode plots

About feedforward

Conclusions

Nyquist criteria

$$L(s) = C(s)P(s)$$

LUND UNIVERSITY

Feedback fundamentals

Stability and Nyquist plots

Representation of feedback systems

Block diagrams System description

Feedback fundamental

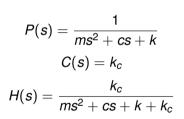
- Static analysis
- Design issues
- The Gang of Four

Stability and Nyquist plots

- Performances and Bode pk
- About feedforward

Conclusions

Nyquist criteria



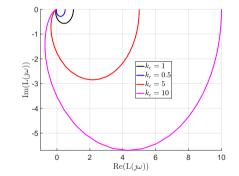


Figure: Nyquist plot.

Pauline Kergus - Karl Johan Åström

Stability and Nyquist plots

Representation of feedback systems

Block diagrams System description

Feedback fundamentals

Static analysis

Design issues The Gang of Four

Stability and Nyquist plots

About feedforward

Conclusions

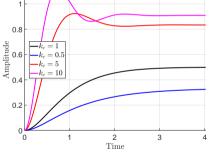


Figure: Step response.

Pauline Kergus - Karl Johan Åström

Nyquist criteria

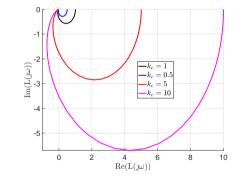


Figure: Nyquist plot.

Stability and Nyquist plots

Representation of feedback systems

Block diagrams System description

Feedback fundamentals

- Static analysis Design issues
- The Gang of Four
- Stability and Nyquist plots Performances and Bode plots

About feedforward

Conclusions

Nyquist criteria $C(s) = \frac{k_c}{s}$

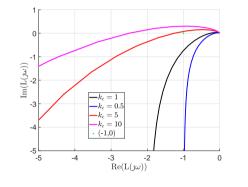


Figure: Nyquist plot.

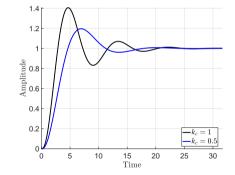


Figure: Step response.

Pauline Kergus - Karl Johan Åström

Representation of feedback systems

Block diagrams System description

Static analysis Design issues The Gang of Four Stability and Nyquist plots Performances and Bode plots

Feedback fundamentals

Stability and Nyquist plots: introducing margins

Nyquist criteria

the open-loop is simpler to understand (causal reasoning)

LUND UNIVERSITY

feedback systems

Stability and Nyquist plots Performances and Bode plots

Block diagrams System description

Feedback fundamentals

Stability and Nyquist plots: introducing margins

Nyquist criteria

- the open-loop is simpler to understand (causal reasoning)
- easier to understand the influence of the controller on stability

LUND UNIVERSITY

feedback systems

Stability and Nyquist plots

About feedforward

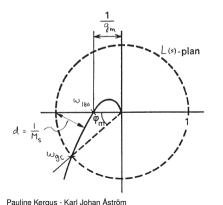
System description

Feedback fundamentals

Stability and Nyquist plots: introducing margins

Nyquist criteria

- the open-loop is simpler to understand (causal reasoning)
- easier to understand the influence of the controller on stability
- stability becomes more than a binary property



Margins visualisation on a Nyquist plot

- Gain margin g_m (2-5) and stability margin s_m
- Phase margin φ_m (30-60°)
- Shortest distance *d* to (−1,0) (0.5-0.8)

feedback systems

Block diagrams System description

The Gang of Four

Performances and Bode plots

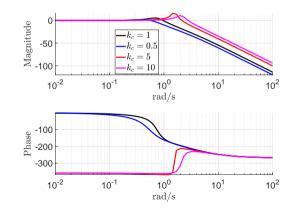
About feedforward

Feedback fundamentals

Performances and Bode plots

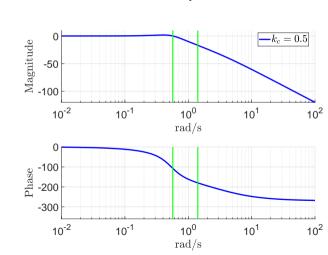
Bode plots

good overview of performance and robustness of the feedback loop



Pauline Kergus - Karl Johan Åström

Performances and Bode plots



Bode plots

Representation of feedback systems

Block diagrams System description

Feedback fundamental

Static analysis

Design issues

The Gang of Four

Stability and Nyquist plots Performances and Bode plots

About feedforward

Conclusions

Pauline Kergus - Karl Johan Åström

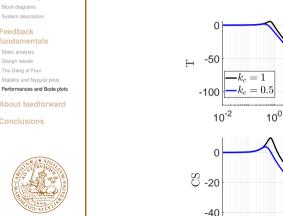
Performances and Bode plots

 \mathbf{PS}

 \mathbf{S} -20 -30

 10^{2}

 10^{2}



Representation of feedback systems Block diagrams System description

Static analysis

Design issues

The Gang of Four

UNIVERSITY

Bode plots

0

-20

-40

-60

10⁻²

0 -10 10^{0}

 10^{0}

 10^{2}

 10^{2}

Pauline Kergus - Karl Johan Åström

10⁻²

 10^{0}

10⁻² Control System Synthesis

Representation of feedback systems

Block diagrams System description

Feedback fundamentals

Static analysis

Design issues The Gang of Four

Ctability and Numlet al

Performances and Bode plot

About feedforward

Conclusions

About feedforward

Limitations of feedback systems: waiting for an error to occur to take corrective actions

Representation of feedback systems Block diagrams

System description

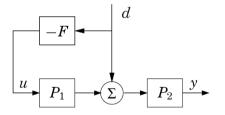
Feedback fundamentals

- Static analysis
- Design issues
- The Gang of Four
- Stability and Nyquist plots

About feedforward

Conclusions

- Limitations of feedback systems: waiting for an error to occur to take corrective actions
- Concept of feedforward: use the information about the disturbance to counteract it before it affects the system



Representation of feedback systems

Block diagrams System description

Feedback fundamentals

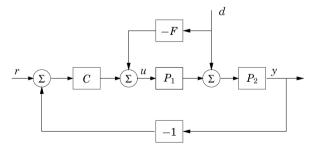
- Static analysis Design issues The Gang of Four
- Stability and Nyquist plots
- Performances and Bode plot

About feedforward

Conclusions

- Limitations of feedback systems: waiting for an error to occur to take corrective actions
- Concept of feedforward: use the information about the disturbance to counteract it before it affects the system
- Usually combined with feedback

About feedforward



Representation of feedback systems

Block diagrams System description

Feedback fundamentals

- Static analysis
- Design issues
- Stability and Nyouist plot
- Performances and Bode plot

About feedforward

Conclusions

About feedforward

- Limitations of feedback systems: waiting for an error to occur to take corrective actions
- Concept of feedforward: use the information about the disturbance to counteract it before it affects the system
- Usually combined with feedback
- Requires to invert the system (impossible for RHP zeros and time delays)

Representation of feedback systems

Block diagrams System description

Feedback fundamental

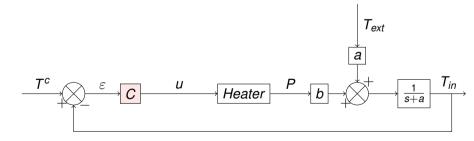
- Static analysis
- Design issues
- The Gang of Four
- Stability and Nyquist plots
- Performances and Bode plots

About feedforward

Conclusions

Example: building temperature control

$$\frac{dT_{in}}{dt} = -a(T_{in} - T_{ext}) + bP$$



Representation of feedback systems

Block diagrams System description

Feedback fundamental

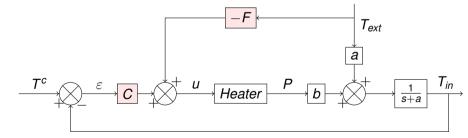
- Static analysis
- Design issues
- The Gang of Four
- Stability and Nyquist plots
- Performances and Bode plots

About feedforward

Conclusions

Example: building temperature control

$$\frac{dT_{in}}{dt} = -a(T_{in} - T_{ext}) + bP$$



Representation of feedback systems

Block diagrams System description

Feedback fundamentals

Static analysis

The Gang of Four

Stability and Nyquist plots

Performances and Bode plots

About feedforward

Conclusions

Feedback

Closed-loop Reactive Robust to modeling errors Risk of instability

Feedforward

Open-loop Planning Sensitive to modelling errors No risk of instability

Other architectures

Representation of feedback systems

Block diagrams System description

Feedback fundamentals

- Static analysis
- Design issues
- The Gang of Four
- Stability and Nyquist plots
- Performances and Bode plots

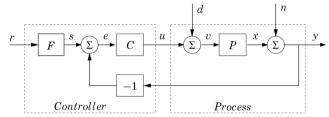
About feedforward

Conclusions

The feedforward F is designed for reference tracking

C handles disturbance rejection, noise attenuation, robustness

Two Degrees of Freedom architecture



Other architectures

Representation of feedback systems

Block diagrams System description

Feedback fundamental

Static analysis

Design issues

The Gang of Four

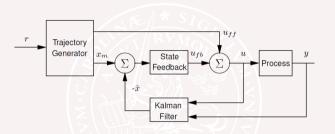
Stability and Nyquist plots

Performances and Bode plots

About feedforward

Conclusions

State Feedback - Kalman Filter Architecture



- A nice separation of the different functions
- The signals x_m and u_{ff} can be generated from r in real time or from stored tables (robotics)

Bo Bernhardsson and Karl Johan Aström Requirements

Pauline Kergus - Karl Johan Åström

Control System Synthesis

09/09/2020 25/26

Conclusions

Representation of feedback systems

Block diagrams System description

Feedback fundamentals

- Static analysis Design issues The Gang of Four
- Stability and Nyquist plots
- About feedforward

Conclusions

About the system

- Different descriptions: physical models or experimental data
- The system should not be taken for granted
- Requirements: stability, performance and robustness
- ightarrow properties of the Gang of Four
 - Limit of actuators: rate and saturation
 - Measurement noise: importance of filtering, sampling Next week:
 - More on process uncertainties and robustness
 - Dynamic limitations