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Introduction

Adapt to adjust to a specified use or situation
Tune to adjust for proper response
Autonomous independence, self-governing
Learn to acquire knowledge or skill by study, instruction or experience
Reason the intellectual process of seeking truth or knowledge by infering
from either fact of logic
Intelligence the capacity to acquire and apply knowledge
In Automatic Control
◮ Automatic tuning - tuning on demand
◮ Gain scheduling - adjust controller parameter based on direct

measurement of environmental parameters
◮ Adaptation - continuous adjustment of controller parameters based

on regular measured signals

A Brief History of Adaptive Control
◮ Adaptive Control: Learn enough about a process and its environment

for control – restricted domain, prior info
◮ Development similar to neural networks

Many ups and downs, lots of strong egos
◮ Early work driven adaptive flight control 1950-1970.

The brave era: Develop an idea, hack a system, simulate and fly!
Several adaptive schemes emerged no analysi
Disasters in flight tests - the X-15 crash nov 15 1967
Gregory P. C. ed, Proc. Self Adaptive Flight Control Systems. Wright
Patterson Airforce Base, 1959

◮ Emergence of adaptive theory 1970-1980
Model reference adaptive control emerged from flight control stability
theory
The self tuning regulator emerged from process control and stochastic
control theory

◮ Microprocessor based products 1980
◮ Robust adaptive control 1990
◮ L1-adaptive control - Flight control 2006
◮ Learning and Adaptation 2020
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Flight Control – Servo Problem
P. C. Gregory March 1959. Proceedings of the Self Adaptive Flight Control
Systems Symposium. Wright Air Development Center, Wright-Patterson
Air Force Base, Ohio.

Most of you know that with the advent a few years ago of hypersonic and
supersonic aircraft, the Air Force was faced with a control problem. This
problem was two-fold; one, it was taking a great deal of time to develop a
flight control system; and two, the system in existence were not capable of
fulfilling future Air Force requirements. These systems lacked the ability to
control the aircraft satisfactorily under all operating conditions.

Test flights start summer 1961
◮ Honeywell self oscillating adaptive system X-15
◮ MIT model reference adaptive system on F-101A

Mishkin, E. and Brown, L Adaptive Control Systems. Mc-Graw-Hill New
York, 1961

Process Control – Regulation Problem

◮ What can be achieved?
◮ What are the benefits?
◮ Small improvements 1%

can have larege economic
consequences

Some contributions
◮ Early pneumatic systems
◮ Kalman’s self-optimizing controller
◮ The self-tuning regulator - moving average controller
◮ Relay auto-tuning

Some Landmarks
◮ Early flight control systems 1955
◮ Dynamic programming Bellman 1957
◮ Dual control Feldbaum 1960
◮ System identification 1965
◮ Learning control Tsypkin 1971
◮ Algorithms MRAS STR 1970
◮ Stability analysis 1980

Lyapunov - Tsypkin
Passivity - Popov Landau
Augmented Error - Monopoli

◮ Industrial products 1982
◮ PID auto-tuning
◮ Robustness 1985
◮ Automatic tuning 1985
◮ Autonomous Control 1995
◮ Adaptation and Learning - a renaisance
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Yakov Z Tsypkin 1919 - 1997
◮ BS, Moscow Electrical Engineering Institute 1941

◮ BS, Moscow State University 1943

◮ MS Engineering, Moscow State University 1945

◮ PhD, Moscow State University 1948

◮ Engineer, senior engineer, Chief of Department,
Research Institute Aircraft Equipment 1941-1949

◮ Senior researcher, Institute Control Sciences,
Moscow 1950-1957

◮ Head of laboratory, Institute Control Sciences,
Moscow, since 1957

◮ Yakov Z. Tsypkin and C. Constanda Relay Control
Systems.

◮ Sampling Systems Theory and Its Application
Volume 1 and 2 (NY 1964 Macmillan. Translated
from Russian by A. Allen an...)

◮ Foundations of the Theory of Learning Systems by
Tsypkin, Ya. Z. (1973) Paperback

◮ Lenin Prize 1960

◮ Quazza Medal IFAC
1984

◮ Hartley Medal IMC 1985

◮ Rufus Oldenburger
Medal ASME 1989

Richard Bellman 1920 - 1984
◮ BA math Brooklyn College 1941
◮ MA University of Wisconsin
◮ Los Alamos Theoretical Physics
◮ PhD Princeton Lefschetz 1946
◮ RAND Corporation
◮ Founding editor Math Biosciences
◮ Brain tumor 1973
◮ 619 papers 39 Books
◮ Dynamic Programming
◮ Bellman Equation HJB
◮ Curse of dimensionality
◮ Bellman-Ford algorithm
◮ John von Neumann Theory Prize (1976)
◮ IEEE Medal of Honor (1979)
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The Self-Oscillating Adaptive System H. Schuck Honeywell 1959

It’s is rather hard to tell when we at Honeywell first became interested in adaptive control.
... In retorspect, it seems that we first conciously articulated the need in connection with our
early work in automatic approach and landing. ...
Let us look at the adaptive flight control system that was proven in the flight tests on the
F-94C. Conceptually it is simple, deceptively so. The input is applied to a model whose
dynamic performance is what we whish the dynamic performance of the aircraft to be. The
actual response is compared with the reponse of the model and the difference is used as
an input to the servo. If the gain of the servo is sufficiently high, the response of the aircraft
will be identical to that of the modle, no matter what the elevator effectiveness, so long as it
is finite and has the right direction.
Design of the model is fairly simple. ... The big problem comes inconnection with the need
to make the gain of the servo sufficiently high. An ordinary linear servo loop will not do. It
simply cannot be given a sufficiently high gain and still be stable. So we go in for
non-linearity, the most extreme form of non-linearity, in fact - the bang-bang type. Full
available power is applied one way, or the other, depending on the the direction of the
swithching order.
Now it is well known that a simple bang-bang sytem is oscillatorye. And we don’t want an
oscillatory aircraft. .. So we look for ways to tame it down, keeping its high-gain
characteristic while reducing it oscillatory activity. ...

The Self-Oscillating Adaptive System
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◮ Shape behavior by the block called Model
◮ Make the inner loop as fast as possible
◮ Relay feedback automatically adjusts to gain margin for low

frequency signals to gm = 2! Dual input describing functions!!!
◮ Relay amplitude adjusted by logic

SOAS P(s) =
k

s(s + 1)2
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Gain k nominally 1 increased to k = 5 at time t = 25
System with linear controller unstable for k > 2

SOAS Simulation - Adding Lead Network
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Gain increases by a factor of 5 at time t = 25

SOAS Simulation - Adding Gain Changer
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Gain increases by a factor of 5 at time t = 25
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The X-15 with MH-96 Autopilot Crash Nov 11 1967

Logic for gain change did not increase gain fast enough

Dydek, Zachary, Anuradha Annaswamy, and Eugene Lavretsky. “Adaptive Control and the
NASA X-15-3 Flight Revisited.” IEEE Control Systems Magazine 30.3 (2010): 32–48.
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Global Stability
A long story
◮ MRAS and the MIT rule 1959
◮ Empirical evidence of instability
◮ Analysis
◮ Butchart and Shackloth 1965
◮ SPR rules
◮ Parks 1966
◮ Landau 1969
◮ The augmented error Monopoli 1974
◮ Counterexamples Feuer and Morse 1978
◮ Stability proofs

◮ Egardt 1979
◮ Goodwin Ramage Caines 1980
◮ Narendra 1980
◮ Morse 1980
◮ Many others

Model Reference Adaptive Control – P. Whitaker MIT 1959

We have further suggested the name model-reference adaptive system for
the type of system under consideration. A model-reference system is
characterized by the fact that the dynamic specification for a desired
system output are embodied in a unit which is called the model-reference
for the system, and which forms part of the equipment installation. The
commandsignal input to the control system is also fed to the model. The
difference between the output signal of the model and the corresponding
output quantity of the system is then the response error. The design
objectie of the adaptive portion of this type of system is to minimze this
response error under all operational conditions of the system. Specifically
the adjustment is done by the MIT Rule.

Model Reference Adaptive Control – MRAS

Adjustment
mechanism

u

Model

Controller parameters

Plant
y

Controller

  ym

  uc

Linear feedback from e = y − ym is not adequate for parameter
adjustment!
The MIT rule

dθ
dt

= −γe
�e
�θ

Many other versions

A First Order System

Process
dy
dt

= −ay + bu

Model
dym

dt
= −amym + bmuc

Controller
u(t) = θ1uc(t)− θ2y(t)

Ideal controller parameters

θ1 = θ 0
1 =

bm

b
θ2 = θ 0

2 =
am − a

b

Find a feedback that changes the controller parameters so that the closed
loop response is equal to the desired model

MIT Rule - Sensitivity Derivatives
The error

e = y − ym

y =
bθ1

p + a + bθ2
uc

�e
�θ1

=
b

p + a + bθ2
uc

�e
�θ2

= − b2θ1

(p + a + bθ2)2 uc = −
b

p + a + bθ2
y

Approximate
p + a + bθ2 ( p + am

Hence
dθ1

dt
= −γ

(

am

p + am
uc

)

e

dθ2

dt
= γ

(

am

p + am
y
)

e

Block Diagram
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Example a = 1, b = 0.5, am = bm = 2.
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Simulation a = 1, b = 0.5, am = bm = 2.
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MRAS - The MIT Rule
The error

e = y − ym, y =
bθ1

p + a + bθ2
uc p =

dx
dt

�e
�θ1

=
b

p + a + bθ2
uc

�e
�θ2

= − b2θ1

(p + a + bθ2)2 uc = −
b

p + a + bθ2
y

Approximate
p + a + bθ2 ( p + am

The MIT rule: Minimize e2(t)

dθ1

dt
= −γ

(

am

p + am
uc

)

e, dθ2

dt
= γ

(

am

p + am
y
)

e

Adaptation Laws from Lyapunov Theory

Replace ad hoc with desings that give guaranteed stability

◮ Lyapunov function V(x) > 0 positive definite

dx
dt

= f(x),
dV
dt

=
dV
dx

dx
dt

=
DV
dx

f(x) < 0

◮ Determine a controller structure
◮ Derive the Error Equation
◮ Find a Lyapunov function

◮ dV
dt
≤ 0 Barbalat’s lemma

◮ Determine an adaptation law

First Order System
Process model and desired behavior

dy
dt

= −ay + bu, dym

dt
= −amym + bmuc

Controller and error

u = θ1uc − θ2y, e = y − ym

Ideal parameters

θ1 =
b

bm
, θ2 =

am − a
b

The derivative of the error

de
dt

= −ame− (bθ2 + a− am)y + (bθ1 − bm) uc

Candidate for Lyapunov function

V (e, θ1, θ2) =
1
2

(

e2 +
1

bγ (bθ2 + a− am)
2 +

1
bγ (bθ1 − bm)

2
)

Derivative of Lyapunov Function

V (e, θ1, θ2) =
1
2

(

e2 +
1

bγ (bθ2 + a− am)
2 +

1
bγ (bθ1 − bm)

2
)

Derivative of error and Lyapunov function
de
dt

= −ame− (bθ2 + a− am)y + (bθ1 − bm) uc

dV
dt

= e
de
dt

+
1
γ (bθ2 + a− am)

dθ2

dt
+

1
γ (bθ1 − bm)

dθ1

dt

= −ame2 +
1
γ (bθ2 + a− am)

(

dθ2

dt
−γye

)

+
1
γ (bθ1 − bm)

(

dθ1

dt
+γuce

)

Adaptation law
dθ1

dt
= −γuce, dθ2

dt
= γye [ de

dt
= −e2

Error will always go to zero, what about parameters, Barbara’s lemma!

Comparison with MIT rule

Lyapunov MIT
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Simulation - Dotted Parameters MIT rule
Process inputs and outputs
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Indirect MRAS

Parameter
adjustment

Controller Plant

Controller
parameters

Control
 signal

Output
Setpoint

Two loops
◮ Regular feedback loop
◮ Parameter adjustment loop

Schemes
◮ Model Reference Adaptive

Control MRAS
◮ Self-tuning Regulator STR
◮ Learning and Dual Control

4



Indirect MRAS - Estimate Process Model
Process and estimator

dx
dt

= ax + bu, dx̂
dt

= âx̂ + b̂u

Nominal controller gains: kx = k0
x = (a− am)/b, kr = k0

r = bm/b.
Estimation error e = x̂ − x has the derivative

de
dt

= âx + b̂u− ax − bu = ae + (â− a)x̂ + (b̂− b)u = ae + ãx̂ + b̃u,

where ã = â− a and b̃ = b̂− a. Lyapunov function

2V = e2 +
1
γ

(

ã2 + b̃2
)

.

Its derivative becomes

dV
dt

= e
de
dt

+
1
γ

(

ã
dâ
dt

+ b̃
db̂
dt

)

= ae2 +
(

ex̂ +
1
γ

dã
dt

)

ã+
(

eu+
1
γ

db̃
dt

)

b̃

Indirect MRAS

Process and estimator

dx
dt

= ax + bu, dx̂
dt

= âx̂ + b̂u

Control law
u = − â− am

b̂
x +

bm

b̂
r

Very bad to divide by b̂!

L1 Adaptive Control - Hovkimian and Cao 2006
Replace

u = − â− am

b̂
x +

bm

b̂
r

b̂u + (â− am)x − bmr = 0

with the differential equation

du
dt

= K
(

bmr − (â− am)x − b̂u
)

Avoid division by b̂, can be interpreted as sending the signal
b̂mr + (am − â)x through a first order filter with the pole s = −Kb̂.

L1 has been tested on several airplanes
I. M. Gregory, C. Cao, E. Xargay, N. Hovakimyan and X. Zou L1 Adaptive Control Design
for NASA AirSTAR Flight Test Vehicle. AIAA Guidance, Navigation, and Control
Conference Portland Oregon August 2011
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The Least Squares Method

The problem: The Orbit of Ceres
The problem solver: Karl Friedrich Gauss
The principle: Therefore, that will be the most probable system of values of
the unknown quantities, in which the sum of the squares of the differences
between the observed and computed values, multiplied by numbers that
measure the degree of precision, is a minimum.
In conclusion, the principle that the sum of the squares of the differences
between the observed and computed quantities must be a minimum, may
be considered independently of the calculus of probabilities.
An observation: Other criteria could be used. But of all these principles
ours is the most simple; by the others we should be led into the most
complicated calculations.

The Book

Recursive Least Squares

yt+1 = −a1yt − a2yt−1 + · · ·+ b1ut + · · ·+ et+1 = φT
t θ + et+1

φ t = [−yt − yt−1 · · · utut−1 · · · ]
θ = [a1a2 · · · b1b2 · · · ],

the parameter estimates are given by

θ̂t = θ̂t−1 + Kt(yt −φ tθ̂t−1)

Kt = Ptφ t

Pt = Pt−1φ t(λ +φT
t Pt−1φ t)

−1

The parameter λ controls how quickly old dat is discounted, many
versions: directional forgetting, square root filtering etc.

Persistent Excitation PE
Introduce

c(k) = lim
t→∞

1
t

t∑

i=1

u(i)u(i − k)

A signal u is called persistently exciting (PE) of order n if the matrix Cn is
positive definite.

Cn =




c(0) c(1) . . . c(n− 1)
c(1) c(0) . . . c(n− 2)

...
c(n− 1) c(n− 2) . . . c(0)




A signal u is persistently exciting of order n if and only if

U = lim
t→∞

1
t

t∑

k=1

(A(q)u(k))2 > 0

for all nonzero polynomials A of degree n− 1 or less.
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Persistent Excitation - Examples

◮ A step is PE of order 1

(q − 1)u(t) = 0

◮ A sinusoid is PE of order 2

(q2 − 2q cosωh + 1)u(t) = 0

◮ White noise
◮ PRBS
◮ Physical meaning
◮ Mathematical meaning

Lack of Identifiability due to Feedback

y(t) = ay(t − 1) + bu(t − 1) + e(t), u(t) = −ky(t)

Multiply by α and add, hence

y(t) = (a + αk)y(t − 1) + (b + α)u(t − 1) + e(t)

Same I/O relation for all â and b̂ such that

â = a + αk, b̂ = b + α

• True value

a

b

    ̂ a 

    
ˆ b 

    Slope − 1 k

Lack of Identifiability due to Feedback

r
v

u ye
C P

−1

ΣΣ

Y(s) =
P(s)C(s)

1 + P(s)C(s)
R(s) +

P(s)
1 + P(s)C(s)

V(s)

U(s) =
C(s)

1 + P(s)C(s)
R(s)− C(s)P(s)

1 + P(s)C(s)
V(s)

Y(s) = P(s)U(s) if v = 0, and Y(s) = − 1
C(s)

U(s) if r = 0.

Identification will then give the negative inverse of controller transfer
function! Any signal entering between u and v will influence closed loop
identification severely A good model can only be obtained if v = 0, or if v
is much smaller than r!

Example

Model
y(t) + ay(t − 1) = bu(t − 1) + e(t)

Parameters

a = −0.9, b = 0.5, σ = 0.5, θ̂(0) = 0, P(0) = 100I

Excitation
◮ Unit pulse at t = 50
◮ Square wave of unit amplitude and period 100
◮ Two cases

a) u(t) = −0.2y(t)
b) u(t) = −0.32y(t − 1)

Example ...

a) u(t) = −0.2y(t)

−2 −1 0 1

−1

0

1

b̂

â

b) u(t) = −0.32y(t − 1)

−2 −1 0 1

−1

0

1

b̂

â

No convergence with constant feedback with compatible structure, slow
convergence to low dimensional subspace with irregular feedback!

T. Hägglund and KJÅ, Supervision of adaptive control algorithms.
Automatica 36 (2000) 1171-1180
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The Billerud-IBM Project
◮ IBM and Computer Control

IBM dominated computer market totally in late 1950
Saw big market in the process industry
Started research group in math department of IBM Research, hired
Kalman, Bertram and Koepcke 1958
Bad experience with installation in US paper industry
IBM Nordic Laboratory 1959 hired KJ Jan1960

◮ Billerud
Visionary manager Tryggve Bergek
Had approached Datasaab earlier for computer control

◮ Project Goals
Billerud: Exploit computer control to improve quality and profit!
IBM: Gain experience in computer control, recover prestige and find a
suitable computer architecture!

◮ Schedule
Start April 1963, computer Installed December 1964
System identification and on-line control March 1965
Full operation September 1966
40 many-ears effort in about 3 years

The Billerud Plant
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Steady State Regulation of Basis Weight and Moisture Content

Small improvements 1% are very valuable

The Scene of 1960

◮ Servomechanism theory 1945
◮ IFAC 1956 (50 year jubilee in 2006)
◮ Widespread education and industrial use of

control
◮ The First IFAC World Congress Moscow 1960
◮ Exciting new ideas

Dynamic Programming Bellman 1957
Maximum Principle Pontryagin 1961
Kalman Filtering ASME 1960

◮ Exciting new development
The space race (Sputnik 1957)
Computer Control Port Arthur 1959

◮ IBM and IBM Nordic Laboratory 1960
Computerized Process Control

The RAND Corporation

Set up as an independent non-profit research organization (Think Tank) for
the US Airforce by Douglas Aircraft Corporation in 1945.
Saab R System

◮ Richard Bellman
◮ Georg Danzig LP
◮ Henry Kissinger
◮ John von Neumann
◮ Condolezza Rice
◮ Donald Rumsfeld
◮ Paul Samuelson

Stochastic Control Theory

Kalman filtering, quadratic control, separation theorem

Process model

dx = Axdt + Budt + dv

dy = Cxdt + de

Controller

dx̂ = Ax̂ + Bu + K(dy − Cx̂dt)

u = L(xm − x̂) + uff

A natural approach for regulation of industrial processes.

Model Structures
Process model

dx = Axdt + Budt + dv

dy = Cxdt + de
Much redundancy z = Tx + noise model. Start by transforming to
innovations representation, ε is Wiener process

dx̂ = Ax̂dt + Budt + K(dy − Cx̂dt)

= (A− KC)x̂dt + Budt + K dε
dy = Cx̂dt + dε

Transfor to observable canonical form

dx̂ =




−a1 1 0 . . . 0
−a2 0 1 0

...
−an−1 0 0 1
−an 0 0 0




x̂dt +




b1
b2
...

bn




udt +




k1
k2
...

kn




dε

dy =
(

1 0 0 . . . 0
)

x̂ + dε

Model Structures
...

dx̂ =




−a1 1 0 . . . 0
−a2 0 1 0

...
−an−1 0 0 1
−an 0 0 0




x̂ dt +




b1
b2
...

bn




u dt +




k1
k2
...

kn




dε

dy =
(

1 0 0 . . . 0
)

+ x̂ + d ε
Input output representation

Y =
b1sn−1 + b2sn−2 + · · ·+ bn

sn + a1sn−1 + · · ·+ an
U+

(

1+
k1sn−1 + k2sn−2 + · · ·+ kn

sn + a1sn−1 + · · ·+ an

)

E

◮ Filter gains ki appear explicitely
◮ Dynamics of system ai is characteristic polynomial of estimator

eigenvalues of A− KC
Corresponding sampled system

A(q−1)y(t) = B(q−1)u(t) + C(q−1)e(t)

The Sampled Model

The basic sampled model for stochastic SISO system is

A(q−1)y(t) = B(q−1)u(t) + C(q−1)e(t)

Notice symmetries
◮ y can be computed from e, dynamics A
◮ e can be computed from y, dynamics A− KC (observer dynamics)
◮ Kalman filter gains explicitly in model A(s)− C(s)

Modeling from Data (Identification)
The Likelihood function (Bayes rule)

p(Yt , θ) = p(y(t)pYt−1, θ) = · · · = −1
2

N∑

1

ε2(t)
σ 2 − N

2
log 2πσ 2

θ = (a1, . . . , an, b1, . . . , bn, c1, . . . , cn, ε(1), .., )
Ay(t) = Bu(t) + Ce(t) Cε(t) = Ay(t)− Bu(t)

ε = one step ahead prediction error

Efficient computations

�J
�ak

=
N∑

1

ε(t)�ε(t)
�ak

C
�ε(t)
�ak

= qky(t)

◮ Good match identification and control. Prediction error is minimized
in both cases!

KJÅ and T. Bohlin, Numerical Identification of Linear Dynamic Systems from Normal
Operating Records. In Hammond, Theory of Self-Adaptive Control Systems, Plenum Press,

January 1966.
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Practical Issues

◮ Sampling period
◮ To perturb or not to perturb
◮ Open or closed loop

experiments
◮ Model validation
◮ 20 min for two-pass compilation

of Fortran program!
◮ Control design
◮ Skills and experiences

Minimum Variance Control - Example

Consider the first order system

y(t + 1) + ay(t) = bu(t) + e(t + 1) + ce(t)

Consider the situation at time t, we have

y(t + 1) = −ay(t) + bu(t) + e(t + 1) + ce(t)

The control signal u(t) can be chosen, the underlined terms are known at
time t and e(t + 1) is independent of all data available at time t. The
controller that minimizes Ey2 is thus given by

bu(t) = ay(t)− ce(t)

and the control error is y(t + 1) = e(t + 1), i.e. the one step prediction
error. The control law becomes u(t) =

a− c
b

y(t).

Minimum Variance (Moving Average Control)

Process model
Ay(t) = Bu(t) + Ce(t)

Factor B = B+B−, solve (minimum G-degree solution)

AF + B−G = C

Cy = AFy + B−Gy = F(Bu + Ce) + B−Gy = CFe + B−(B+Fu + Gy)

Control law and output are given by

B+Fu(t) = −Gy(t), y(t) = Fe(t)

where deg F ≥ pole excess of B/A

True minimum variance control V = E 1
T

∫T
0 y2(t)dt

Properties of Minimum Variance Control
◮ The output is a moving average

y = Fe, deg F ≤ deg A− deg B+.

Easy to validate!
◮ Interpretation for B− = 1 (all process zeros canceled), y is a moving

average of degree npz = deg A− deg B. It is equal to the error in
predicting the output npz step ahead.

◮ Closed loop characteristic polynomial is

B+Czdeg A−deg B+
= B+Czdeg A−deg B+deg B− .

◮ The sampling period an important design variable!
◮ Sampled zeros depend on sampling period. For a stable system all

zeros are stable for sufficiently long sampling periods.

KJÅ, P Hagander, J Sternby Zeros of sampled systems. Automatica 20 (1), 31-38, 1984

Minimum Variance Control

Process model

yt + a1yt−1 + ... = b1ut−k + ... + et + c1et−1 + ...
Ayt = But−k + Cet

◮ Ordinary differential equation with time
delay

◮ Disturbances are statinary stochastic
process with rational spectra

◮ The predition horizon: tru delay and
one sampling period

◮ Control law Ru = −Sy
◮ Output becomes a moving averate of

white noise yt+k = Fet

◮ Robustness and tuning

The output is a moving av-
erage yt+j = Fet , which is
easy to validate!

Performance (B− = 1) and Sampling Period

Plot prediction error as a function of prediction horizon Tp

Tp

σ 2
pe

Td Td + Ts

Td is the time delay and Ts is the sampling period. Decreasing Ts reduces
the variance but decreases the response time.

A Robustness Result

A simple digital controller for systems with monotone step response
(design based on the model y(k + 1) = bu(k))

uk = k(ysp − yk) + uk−1, k < 2
g(∞)

t

H

b

Ts

Stable if g(Ts) >
g(∞)

2
kjå: Automatica 16 1980, pp 313–315.

Back to Billerud - Performance of Minimum Variance Control

KJÅ, Computer control of a paper machine—An application of linear stochastic control
theory. IBM Journal of research and development 11 (4), 389-405, 1967
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IBM Scientific Symposium Control Theory and Applications 1964 Summary

◮ Regulation can be done
effectively by minimum variance
control

◮ Easy to validate because
regulated output is a moving
average of white noise!

◮ Robustness depends critically
on the sampling period

◮ Sampling period is the design
variable!

◮ The Harris Index and related
criteria

◮ OK to assess but how about
adaptation?

Adaptive Control

1. Introduction
2. Self-oscillating Adaptive Control
3. Model Reference Adaptive Control
4. Estimation and Excitation
5. Minimum Variance Control
6. Self-Tuning Regulators

The self-tuning regulator
Properties

7. Learning and Dual Control
8. Applications
9. Related Fields

10. Summary

Rudolf Emile Kalman 1930-2016

◮ Born in Budapest 1930
◮ BS MIT 1953
◮ MS MIT 1954
◮ PhD Columbia University NY 1957
◮ IBM Research Yorktown Heights 1957-58
◮ RIAS Baltimore 1958-1964
◮ Professor Stanford 1964-1971
◮ Professor University of Florida 1971-1992
◮ Professor 1973 Professor ETH 1973-2016

Kalman’s Self-Optimizing Regulator 1

R. E. Kalman, Design of a self optimizing control system. Trans. ASME
80,468– 478 (1958)

Inspired by work
at IBM Research and DuPont

Repeat the following two steps at
each sampling instant
Step 1: Estimate the parameters

a1, a2, . . . , an, b1, b2, . . . , bn

in the model (8)

Step 2: Use a control law that gives the
shortest settling time for a step change in
the reference signal

Remark: Many other methods can be
used for parameter estimation and control
design

Kalman’s Self-Optimizing Regulator 2

R. E. Kalman, Design of a self optimizing control system. Trans. ASME
80,468– 478 (1958)

Remark on computations
In practical applications, however, a general-purpose digital com-
puter is an expensive, bulky, extremely complex, and sometimes
awkward pieze of equipment. Moreover, the computational capa-
bilities (speed, storage capacity, accuracy) of even smaller com-
mercially available general-purpose digital computers are consid-
erably in access of what is demanded in performing the compu-
tations listed in the Appendix. For these reasons, a small special-
purpose computer was constructed which could be externally dig-
ital and internally analog

Columbia University had a computer of this type

Unfortunately Kalman’s regulator never worked!

The Self-Tuning Regulator

Process   parameters

Controller
design

Estimation

Controller Process

Controller
parameters  

Reference

Input Output

Specification

Self-tuning regulator

◮ Certainty Equivalence - Design as if the estimates were correct
(Simon)

◮ Many control and estimation schemes

The Self-Tuning Regulator STR
Process model, estimation model and control law

yt + a1yt−1 + · · ·+ anyt−n = b0ut−k + · · ·+ bmut−m

+ et + c1et−1 + · · ·+ cnet−n

yt+k = s0yt + s1yt−1 + · · ·+ smyt−m + r0(ut + r1ut−1 + · · · rnut−{)

ut + r̂1ut−1 + · · · r̂nut−{ = −(ŝ0yt + ŝ1yt−1 + · · ·+ ŝmyt−m)/r0

If estimate converge and 0.5 < r0/b0 < ∞
ry(τ) = 0,τ = k, k + 1, · · · k + m + 1
ryu(τ) = 0,τ = k, k + 1, · · · k + {

If degrees sufficiently large ry(τ) = 0,∀τ ≥ k

◮ Converges to minimum variance control even if ci ,= 0, Surprising!
◮ Automates identification and minimum variance control in about 35

lines of code.
◮ The controller that drives covariances to zero

KJÅ and B. Wittenmark. On Self-Tuning Regulators, Automatica 9 (1973),185-199
Björn Wittenmark, Self-Tuning Regulators. PhD Thesis April 1973
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The Self-Tuning Regulator STR ...

Estimates of parameters in

yt+a1yt−1+· · ·+anyt−n = b0ut−k+· · ·+bmut−m+et+c1et−1+· · ·+cnet−n

gives unbiased estimates if ci = 0. Very surprising that the self-tuner
works with ci ,= 0. Discovered empirically in simulations by Wieslander,
Wittenmark and independently by Peterka.
Johan Wieslander and Björn Wittenmark An approach to adaptive control using real time
identification. Proc 2nd IFAC Symposium on Identification and Process Parameter
Estimation, Prague 1970

V. Peterka Adaptive digital regulation of noisy systems. Proc 2nd IFAC Symposium on
Identification and Process Parameter Estimation, Prague 1970

Proven in

KJÅ and Wittenmark, Björn", On Self Tuning Regulators, April 1972, Technical Report
TFRT-7017, Department of Automatic Control, Lund University, Sweden. Presented at 5th
IFAC World Congress Paris March 1972.

KJÅ and B. Wittenmark. On Self-Tuning Regulators, Automatica 9 (1973),185-199.

Test at Billerud 1973

U. Borisson and B. Wittenmark. An Industrial Application of a Self-Tuning Regulator, 4th
IFAC/IFIP Symposium on Digital Computer Applications to Process Control 1974.

U. Borisson. Self-Tuning Regulators - Industrial Application and Multivariable Theory. PhD
thesis LTH 1975.

Convergence Proof
Process model Ay = Bu + Ce

yt + a1yt−1 + · · ·+ anyt−n = b0ut−k + · · · bmut−n

+ et + c1et−1 + · · ·+ cnet−n

Estimation model

yt+k = s0yt + s1yt−1 + · · ·+ smyt−m + r0(ut + r1ut−1 + · · · rnut−{)

Theorem: Assume that
◮ Time delay k of the sampled system is known
◮ Upper bounds of the degrees of A, B and C are known
◮ Polynomial B has all its zeros inside the unit disc
◮ Sign of b0 is known

The the sequences ut and yt are bounded and the parameters converge to
the minimum variance controller

G. C. Goodwin, P. J. Ramage, P. E. Caines, Discrete-time multivariable adaptive control.
IEEE AC-25 1980, 449–456

Convergence Proof
Markov processes and differential equations

dx = f(x)dt + g(x)dw, �p
�t

= −�p
�x

(�fp
�x

)

+
1
2
�2

�x2 g2f = 0

θt+1 = θt +γtφe, dθ
dτ = f(θ) = Eφe

Method for convergence of recursive algorithms. Global stability of STR
(Ay = Bu + Ce) if G(z) = 1/C(z)− 0.5 is SPR

L. Ljung, Analysis of Recursive Stochastic Algorithms IEEE Trans AC-22 (1967) 551–575.

Converges locally if ℜC(zk) > 0 for all zk such that B(zk) = 0

Jan Holst, Local Convergence of Some Recursive Stochastic Algorithms. 5th IFAC
Symposium on Identification and System Parameter Estimation, 1979

General convergence conditions

Lei Gui and Han-Fu Chen, The Åström-Wittenmark Self-tuning Regulator Revisited and
ELS-Based Adaptive Trackers. IEEE Trans AC36:7 802–812.

Adaptive Control
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2. Self-oscillating Adaptive Control
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5. Minimum Variance Control
6. Self-Tuning Regulators
7. Learning and Dual Control
8. Applications
9. Related Fields

10. Summary

Dual Control - Alexander Aronovich Fel’dbaum

Control should be probing as well as directing
◮ Dual control theory I A. A. Feldbaum

Avtomat. i Telemekh., 1960, 21:9,
1240–1249

◮ Dual control theory II A. A. Feldbaum
Avtomat. i Telemekh., 1960, l21:11,
1453–1464

◮ R. E. Bellman Dynamic Programming
Academic Press 1957

◮ Stochastic control theory - Adaptive
control

◮ Decisionmaking under uncertainty -
Economics

◮ Optimization Hamilton Jacobi Bellman

1913 – 1969

Dual Control - Feldbaum

u yNonlinear
control law

Process

 Calculation
of hyperstate

Hyperstate

  u c

◮ No certainty equivalence
◮ Control should be directing as well as investigating!
◮ Intentional perturbation to obtain better information
◮ Conceptually very interesting
◮ Unfortunately very complicated

Helmerson KJA
Is it time for a second look?

The Problem

Consider the system
yt+1 = yt + but + et+1

where et is a sequence of independent normal (0, σ 2) random variables
and b a constant but unknown parameter with a normal b̂, P(0) prior or a
random wai.
Find a control llaw such that ut based on the information available at time t

Xt = yt , yt−1, . . . , y0, ut−1, ut−2, . . . , u0,

that minimizes the cost function

V = E
T∑

k=1

y2(k).

KJÅ and A. Helmersson. Dual Control of an Integrator with Unkown Gain, Computers and
Mathematics with Applications 12:6A, pp 653–662, 1986.
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The Hamilton-Jakobi-Bellman Equation

The solution to the problem is given by the Bellman equation

Vt(Xt) = EXt min
ut

E
(

y2
t+1 + Vt+1(Xt+1)

∣∣∣Xt

)

The state is Xt = yt , yt−1, yt−2, . . . , y0, ut−1, ut−2, . . . , u0. The derivation
is general applies also to

xt+1 = f(xt , ut , et)

yt = g(xt , ut , vt)

minE
∑

q(x1, ut)

How to solve the optimization problem?
The curse of dimensionality: Xt has high dimension

A Sufficient Statistic - Hyperstate

It can be shown that a sufficient statistic for estimating future outputs is yt
and the conditional distribution of b given Xt . In our setting the conditional
distribution is gaussian N

(

b̂t , Pt
)

b̂t = E(bpXt), Pt = E[(b̂t − b)2pXt ]

b̂t+1 = b̂t + Kt [yt+1 − yt − b̂tut] = b̂t + Ktet+1

Kt =
utPt

σ 2 + u2
t Pt

Pt+1 = [1− Ktut ]Pt =
σ 2Pt

σ 2 + u2
t Pt

In our particular case the conditional distrubution depens only on by y, b̂
and P - a significant reduction of dimensionality!

The Bellman Equation

Vt(Xt) = EXt min
ut

E
(

y2
t+1 + Vt+1(Xt+1)

∣∣∣Xt

)

Use hyperstate to replace Xt = yt , yt−1, yt−2, . . . , y0, ut−1, ut−2, . . . , u0
with yt , b̂t , Pt . Introduce

Vt(yt , b̂t , Pt) = min
Ut

(

E
T∑

k=t+1

y2
k

∣∣∣∣yt , b̂t , Pt

)

yt+1 = yt + b̂tut + et+1, b̂t+1 = b̂t + Ktet+1, Pt+1 =
σ 2Pt

σ 2 + u2
t Pt

and the Bellman equation becomes

Vt(y, b̂, P) = min
u

E
(

y2
t + Vt+1

(

yt+1, b̂t+1, Pt+1
)∣∣y, b̂t , Pt

)

Short Time Horizon - 1 Step Ahead
Consider situation at time t and look one step ahead

VT−1(y, b̂, P) = min
u

E
T∑

k=T

y2
k = min

u
y2

T

yT = yT−1 + buT−1 + eT

We know yt have an estimate b̂ of b with covariance P

VT (y, b̂, P) = min
u

Ey2
T = min

u

(

(y + b̂u)2 + u2P + σ 2
)

= min
u

(

y2 + 2yb̂u + u2(b̂2 + P) + σ 2
)

= σ 2 +
Py2

b̂2 + P

where minimum occurs for

u = − b̂
b̂2 + P

y [ u = −1
b̂

y as P → 0

These control laws are called cautious control and certainty equivalence
control (Herbert Simon).

The Solution and Scaling

Vt(y, b̂, P) = min
u

(

(y + b̂u)2 + σ 2 + u2P + Vt+1
(

yt+1, b̂t+1, Pt+1)
)

VT (y, b̂, P) = σ 2 +
Py2

b̂2 + P

Iterate backward in time. An important observation, VT (y, P̂, P) does not
depend on y, state is thus two-dimensional!!
Scaling

η =
y
σ . β =

b̂√
P

, µ =
u
√

P
σ

Introduce
Two functions: the value function and the policy function

Controller Gain - Cautious Control

u = − b̂
b̂2 + P

y = Ky, η =
y
σ . β =

b̂√
P

,

Solving the Bellman Equation Numerically
The scaled Bellman equation

Wt(η, β ) = min
µ

Ut(η, β , µ), φ(x) =
1√
2π

e−x2/2

where

Ut(η, β , µ) = (η + β µ)2 + 1 + µ2

+

∫∞

−∞

(

Wt+1(η + β µ + ε
√

1 + µ2, β
√

1 + µ2 + µε
)

φ(ε)dε

Solving minimization gives control law µ = Π(η, β ), µ = u
√

P
σ ,

u = σ√
P Π(η,β)

Numerics:
◮ Transform to the interval (0 1), quantize U function 128$ 128
◮ Store the a gridded version of the function U(η, β , mu)
◮ Evaluate the function W(η, β , µ) by extrapolation, and numeric

integration
◮ Minimize W(η, β , µ) with respet to µ

Controller Gain - 3 Steps

K(η, β ) larger than 3 not shown
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Understanding Probing

Notice jump!!

Controller gain for 30 Steps

Cautious Control - Drifting Parameters Dual Control - Drifting Parameters

Comparison

Cautious Control Dual Control

Summary
◮ Use dynamic programming (move optimization inside the integral)

min
Ut

E
T∑

k=t+1

y2
t = min

Ut

EXt E
(

T∑

k=t+1

y2
k

∣∣∣Xt

)

= EXt min
Ut

E
(

T∑

k=t+1

y2
k

∣∣∣Xt

)

= EXt min
ut

min
Ut+1

E
(

T∑

k=t+1

y2
k

∣∣∣Xt

)

= EXt min
ut

E
(

y2
t+1 +min

Ut+1

T∑

k=t+2

y2
k

∣∣∣Xt

)

◮ State reduction y, b̂, P → η = y/σ, β = b̂/
√

P

◮ Certainty equivalence, cautious and dual

◮ K. J. Åström Control of Markov Chains with Incomplete State Information
JMAA, 10, pp. 174–205, 1965.

◮ K. J. Åström and A. Helmersson. Dual Control of an Integrator with Unkown
Gain, Computers and Mathematics with Applications 12:6A, pp 653–662,
1986.
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Control of Orecrusher 1973

Forget Physics! - Hope an STR can work!
Power increased from 170 kW to 200 kW

R. Syding, Undersökning av Honeywells adaptiva reglersystem. MS Thesis LTH 1975
U. Borisson, and R. Syding, Self-Tuning Control of an Ore Crusher, Automatica 1976, 12:1,
1–7
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Control over Long Distance 1973
Plant in Kiruna, computer in Lund. Distance Lund-Kiruna 1400 km,
home-made modem (Leif Andersson), supervision over phone, sampling
period 20s.

Results

Significant improvement of production 15 %!

Steermaster
Kockums

◮ Ship dynamics
◮ SSPA Kockums
◮ Full scale tests on ships

in operation

Ship Steering - 3% less fuel consumption
STR Conventional

C. Källström Identification and Adaptive Control Applied to Ship Steering PhD Thesis
Department of Automatic Control, Lund University, Sweden, April 1979.

C. Källström, KJÅ, N. E. Thorell, J. Eriksson, L. Sten, Adaptive Autopilots for Tankers,
Automatica, 15 1979, 241-254

ABB

◮ ASEA Innovation 1981
◮ DCS system with STR
◮ Grew quickly to 30 people

and 50 MSEK in 1984
◮ Strong grpup
◮ Wide range of applications
◮ Adaptive feedforward

Incorporated in ABB Master 1984
and later in ABB 800xA
◮ Difficult to transfer to

standard sales and
commision workforce

Arthur D . Little Innovation at ASEA. 1985

First Controll

◮ Gunnar Bengtsson
◮ Founder of ABB Novatune
◮ Rolling mills
◮ Continuous casting
◮ Semiconductor manufacturing
◮ Microcontroller XC05IX

Raspberry pie, linux
Robust adaptive control
Grahpical programming
Modelica simulation

Relay Auto-Tuner Tore

◮ One-button tuning
◮ Automatic generation of

gain schedules
◮ Adaptation of feedback and

feedforward gains
◮ Many versions

Single loop controllers
DCS systems

◮ Robust
◮ Excellent industrial

experience
◮ Large numbers

Adaptive Control

1. Introduction
2. Self-oscillating Adaptive Control
3. Model Reference Adaptive Control
4. Estimation and Excitation
5. Minimum Variance Control
6. Self-Tuning Regulators
7. Learning and Dual Control
8. Applications
9. Related Fields

◮ Adaptive Signal Processing
◮ Neural Networks
◮ Boxes

10. Summary
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The Perceptron - Rosenblatt
◮ PhD Experimental Psychology, Cornell

1956: broad interests mathematics ...
◮ Cornell Aeronautical Lab 1957-59
◮ Probabilistic model for information storage

in the brain
◮ One layer neural network classifier

Rosenblatt, Frank (1957). "The
Perceptron—a perceiving and
recognizing automaton". Re-
port 85-460-1. Cornell Aero-
nautical Laboratory.

Addaline - Bernard Widrow & Ted Hoff (Intel 4004)

◮ Adaline - ADAptive LInear Neuron - Single layer neuron network
y = sign

∑m
j=1 wijuj , least Mean Square (LMS)

◮ B. Widrow and M. E. Hoff, “Adaptive Switching Circuits,” 1960 IRE
WESCON Convention Record, 1960, pp. 96-104.

◮ Analog implementation potentiometers
◮ Separating hyperplane
◮ Madaline a multilayer version

Neural Networks Development of Learning

Development of Image Recognition

Very rapid development because of good test batch and competing algorithms

BOXES 1960 - Donald Michie
◮ Cryptography Bletchley Park
◮ Director Department of Machine

Intelligence and Perception, University
of Edinburgh (previously the
Experimental Programming Unit 1965)

◮ Quantize state in boxes
◮ Each box stores information about

control actions taken and the
performance

◮ Local demon and global demons
◮ Used for playing games like

Tick-Tack-Toe and broom balancing

D. Michie and R. A. Chambers, “BOXES: An experiment in adaptive
control,” in Machine Intelligence 2, E. Dale and D. Michie, Eds. Edinburgh:
Oliver and Boyd, (1968), pp. 137–152.
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Summary

◮ A glimpse of an interesting and useful field of control
◮ Nonlinear system, not trivial to analyse and design
◮ Several good algorithms: self-oscillating, MRAS and STR

Why is not STR more widely used?
Natural candidate for regulation in noisy environment?
Computer systems?

◮ A number of successful industrial applications
◮ Currently renewed interest because of connections to learning

KJÅ and B. Wittenmark. Adaptive Control. Second Edition. Dover 2008.
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