
6 
LINEAR OPERATORS 
AND ADJOINTS 

6.1 Introduction 

A study of linear operators and adjoints is essential for a sophisticated 
approach to many problems oflinear vector spaces. The associated concepts 
and notations of operator theory often streamline an otherwise cumber
some analysis by eliminating the need for carrying along complicated 
explicit formulas and by enhancing one's insight of the problem and its 
solution. This chapter contains no additional optimization principles but 
instead develops results of linear operator theory that make the application 
of optimization principles more straightforward in complicated situations. 
Of particular importance is the concept of the adjoint of a linear operator 
which, being defined in dual space, characterizes many aspects of duality 
theory. 

Because it is difficult to obtain a simple geometric representation of an 
arbitrary linear operator, the material in this chapter tends to be somewhat 
more algebraic in character than that of other chapters. Effort is made, 
however, to extend some of the geometric ideas used for the study of linear 
functionals to general linear operators and also to interpret adjoints in 
terms of relations among hyperplanes. 

6.2 Fundamentals 

A transformation T is, as discussed briefly in Chapter 2, a mapping from 
one vector space to another. If T maps the space X into Y, we write 
T: X -+ Y, and if T maps the vector x F.: X into the vector Y E Y, we write 
y = T(x) and refer to y as the image of x under T. As before, we allow that 
a transformation may be defined only on a subset D C IX, called the domain 
of T, although in most cases D = X. The .. ,)Uection of an vectors Y E Y for 
which there is an xED with y = T(x) is called the range of T. 

If T : X -+ Yand S is a given set in X, we denote by T(S) the image of S 
in Y defined as the subset of Y consisting of points of the form y = T(s) 
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144 LINEAR OPERATORS AND ADJOINTS 6 

with s E S. Similarly, given any set P c: Y, we denote by T -1(p) the inverse 
image of P which is the set consisting of all points x E X satisfying 
T(x) EP. 

Our attention in this chapter is focused primarily on linear transforma
tions which are alternatively referred to as linear operators or simply 
operators and are usually denoted by A, E, etc. For convenience we often 
omit the parentheses for a linear operator and write Ax for A(x). The range 
of a linear operator A : X -» Y is denoted ~(A) and is obviously a subspace 
of Y. The set {x : Ax = iI} corresponding to the linear operator A is called 
the nulls pace of A and denoted .;V(A). It is a subspace of X. 

Of particular importance is the case in which X and Yare normed 
spaces and A is a continuous operator from X into Y. The following result 
is easily established. 

Proposition 1. A linear operator on a normed space X is continuous at every 
point in X ifit is continuous at a single point. 

Analogous to the procedure for constructing the normed dual consisting 
of continuous linear functionals on a space X, it is possible to construct 
a normed space of continuous linear operators on X. We begin by defining 
the norm of a linear operator. 

Definition. A linear operator A from a normed space X to a normed space 
Y is said to be bounded if there is a constant M such that IIAxlls M Ilxll 
for all x E X. The smallest such M which satisfies the above condition is 
denoted II A II and called the norm of A. 

Alternative, but equivalent, definitions ofthe norm are 

IIAII = sup IIAxll 
Ilxll S 1 

IIAII = sup IIAxll. 
x¢8 IIx!! 

We leave it to the reader to prove the following proposition. 

Proposition 2. A linear operator is bounded (f and only if it is continuous. 

If addition and scalar multiplication are defined by 

(AI + A2)x = Alx + A2 x 

(aA)x == a(Ax) 

the linear operators from X to Y form a linear vector space. If X and Yare 
normed spaces, the subspace of continuous linear operators can be 
identified and this becomes a normed space when the norm of an operator 
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is defined according to the last definition. (The reader ciln easily verify that 
the requirements for a norm are satisfied.) 

Definition. The norffiied space of all bounded linear operators from the 
normed space X into the normed space Y is denoted B(X, Y). 

We note the following result which generalizes Theorem 1, Section 5.2 .. 
The proof requires only slight modification of the proof in Section 5.2 
and is omitted here. 

Theorem 1. Let X and Y be normed spaces with Y complete. Then the space 
B(X, Y) is complete. 

In general the space B(X, Y), although of interest by its own right, does 
not play nearly as dominant a role in our theory as that of the normed 
dual of X. Nevertheless, certain of its elementary properties and the defini
tion itself are often convenient. For instance, we write A e B(X, Y) for, 
"let A be a continuous linear operator from the normed space X to the 
normed space Y." 

Finally, before turning to some examples, we observe that the spaces 
of linear operators have a structure not present in an arbitrary vector space 
in that it is possible Ito define products of operators. Thus, if S : X ~ Y, 
T: Y -+ Z, we define the operator TS : X -+ Z by the equation (TS)(x) = 
T(Sx) for all x e X. For bounded operators we have the following useful 
result. 

Proposition 3. Let X, Y, Z be normed spaces and suppose S e B(X, Y), 
Te B(Y, Z). Then IITSII :s; IITIIIISIi. 

Proof II TSxl1 :s; IITllllSxll :s; IITllllSllllxl1 for all x e X. I 
Example 1. Let X =: C[O, 1] and define the operator A: X ~ X by 
Ax = SA K(s, t)x(t) dt where the function K is contmuous on the unit 
square 0 :s; s :s; 1,0 :s; t :s; 1. The operator A is clearly linear. We compute 
IIAII. We have 

IIAxll= max I{K(S,t)X(t)dt\ 
o sss 1 0 

:s; max {f1IK(S, t)1 dt} max Ix(t)1 
OS.S1 0 OS!Sl 

1 

= max f IK(s, t)1 dt . IIxll. I 
o s.s 1 0 

Therefore, 
1 

IIAII :s; max f IK(s, t)1 dt. 
OSsSl 0 
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We can show that the quantity on the right-hand side is actually the 
norm of A. Let So be the point at which the continuous function 

1 

fo IK(s, 1)1 dt 

achieves its maximum. Given e > 0 let p be a polynomial which approxi
mates K(so , . ) in the sense that 

max IK(so, t) - p(t)1 < e 
O~t~ 1 

and let x be a function in C [0, 1) with Ilxll ~ 1 which approximates the 
discontinuous function sgn p(t) in the sense that 

IS: p(t)x(t) dt - s: Ip(t)1 dt I < e. 

This last approximation is easily constructed since p has only a finite 
number of sign changes. 

For this x we have 

IS: K(so , t)x( t) dt I ~ IS: p(t)x(t) dt I-I s: [K(so, t) - p(t)Jx(t) dt I 
~ IS: p(t)x(t) dt /- e ~ J: Ip(t)1 dt - 2e 

~ (IK(So, t)1 dt -/ s: [IK(so, t)1 - lp(t)l] dt /- 2e 

1 

~ J IK(so, t)1 dt - 3e. 
D 

Thus, since IIxll ::; 1, 
1 

IIA" ~ J IK(so, t)1 dt - 3e. 
o 

But since e was arbitrary, and since the reverse inequality was established 
above, we have 

1 

IIAII = max f. IK(s, t)1 dt. 
o ~s~ 1 0 

Example 2. Let X = En and let A : X ~ X. Then A is a matrix acting on the 
components of x. We have llAx1l2 = (x I A' Ax) where A' is the transpose of 
the matrix A. Denoting A' A by Q, determination of IIAll is equivalent to 
maximizing (x I Qx) subject t6 IIxl12 ~ 1. This is a finite-dimensional 
optimization problem. Since Q is symmetric and positive semidefinite, it 
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has nonnegative eigenvalues and the solution of the optimization problem 
is given by x equal to the eigenvector of Q corresponding to the largest 
eigenvalue. 

We conclude that IIAII =-jXmax• 

Example 3. The operator Ax = did! x(t), defined on the subspace M of 
CEO, 1] consisting of all continuously differentiable functions, has range 
CEO, 1]. A is not bounded, however, since elements of arbitrarily small 
norm can produce elements of large norm when differentiated. On the 
other hand, if A is regarded as having domain D [0, IJ and range C [0, IJ, 
it is bounded with II A II = 1. 

~RSE OPERATORS 

6.3 Linearity of Invers,!s 

Let A : X -+ Y be a linear operator between two linear spaces X and Y. 
Corresponding to A we consider the equation Ax = y. For a given Y E Y 
this equation may: 

1. have a unique solution x E X, 
2. have no solution, 
3. have more than one solution. 

Many optimization problems can be regarded as arising from cases 2 or 
3; these are discussed in Section 6.9. Condition 1 holds for every Y E Y 
if and only if the mapping A from X to Y is one-to-one and has range equal 
to Y, in which case the operator A has an inverse A -I such that if Ax = y, 
then A -I(y) = x. 

Proposition 1. If a linear operator A : X -+ Y has an inverse, the inverse 
A -I is linear. 

Proof. Suppose A -1(YI) = Xl' A -1(Y2) = x2, then 

A(Xl) = Yl' A(x2) = Y2' 

and the linearity of A implies that A(OCIXI + OC2 X2) =octYt + OC2Y2' Thus 
A-I(OC1Yt + OC2Y2) = ocIA-I(YI) + oc2A-1(Y2)' I 

The solution of linear equations and the determination of inverse 
op~rators are, of course, important areas of pure and applied mathematics. 
For optimization theory,. however, we are not so much interested in solving 
equations as formulating the equations appropriate for characterizing an 
optimal vector. Once the equations are formulated, we may rely on standard 
techniques for their solution. There are important exceptions to this point 
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of view, however, since optimization theory often provides effective proce
dures for solving equations. Furthermore, a problem can never really be 
regarded as resolved until an efficient computational method of solution is 
derived. Nevertheless, our primary interest in linear operators is their 
role in optimization problems. We do not develop an extensive theory 
of linear equations but are content with establishing the existence of a 
solution. 

6.4 The Banach Inverse Theorem 

Given a continuous linear operator A from a normed space X onto a 
normed space Y and assuming that A has an inverse A-I, it follows that 
A -1 is linear but not necessarily continuous. If, however, X and Yare 
Banach spaces, A -1 must be continuous ifit exists. This result, known as the 
Banach inverse theorem, is one of the analytical cornerstones of functional 
analysis. Many important, deep, and sometimes surprising results follow 
from it. We make application of the result in Section 6.6 and again in 
Chapter 8 in connection with Lagrange multipliers. Other applications to 
problems of mathematical analysis are discussed in the problems at the end 
of this chapter. 

This section is devoted to establishing this one result. Although the proof 
is no more difficult at each step than that of most theorems in this book, 
it involves a number of steps. Therefore, since it plays only a supporting 
role in the optimization theory, the reader may wish to simply scan the 
proof and proceed to the next section. I 

We begin by establishing the following lemma which itself is an impor
tant and celebrated tool of analysis. 

Lemma 1. (Baire) A Banach space X is not the union of countably many 
nowhere dense sets in X. 

Proof Suppose that {E.} is a sequence of nowhere dense sets and let 
Fn denote the closure of En' Then Fn contains no sphere in X. It follows that 
each of the sets; n is open and dense in X. 

Let S(X1' r 1) be a sphere in F\ with center at Xl and radius r1. Let 
S(X" , r,,) be a sphere in P" (') S(x!, rd2). (Such a sphere exists since P 2 

is open and dense.) Proceeding inductively, let S(x., rn) be a sphere in 
S(x._1> r._ 1/2) (') p •. 

The sequence {xn} so defined is clearly a Cauchy sequence and, thus, 
by the completeness of X, there is a limit x; Xn -t x. This vector x lies in 
each of the S(xn' r.), because, indeed, x. +k ES(X., rn/2) for k ~ 1. 
Hence X lies in eachPn • Therefore, x E nn Fn. 
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It follows that the union of the original collection of sets {En} is not X 
since 

Theorem 1. (Banach InlJerse Theorem) Let A be a continuous linear operator 
from a Banach space X onto a Banach space Y and suppose that the inverse 
operator A -1 exists. ThEm A -1 is continuous. 

Proof In view of the linearity of A and therefore of A -1, it is only 
necessary to show that A -1 is bounded. For this it is only necessary to show 
that the image A(S) in Y of any sphere S centered at the origin in X contains 
a sphere P centered at the origin in Y, because then the inverse image of P 
is contained in S. The proof amounts to establishing the existence of a 
sphere in A(S). 

Given a sphere S, for any x E X there is an integer n such that x/n E S 
and hence A(x/n) E A(8) or, equivalently, A(x) E nA(S). Since A maps X 
onto Y, it follo:ws that 

00 

y = U nA(S). 
"=1 

According to Baire's l,emma, Y cannot be the union of countably many 
nowhere dense sets and, hence, there is an n such that the closure of nA(S) 
contains a sphere. It follows that A(S) contains a sphere whose center y 
may be taken to be in A(S). Let this sphere N(y, r) have radius r, and let 
y = A(x). Now as y' varies over N(y, r), the points y' - y cover the sphere 
N«(}, r) and the points of a dense subset of these are of the form A(x' - x) 
where A(x' ) = y', x' E S. Since x', XES, it follows that x' - x E 2S. Hence, 

the closure of A(2S) contains N«(}, r) (and by linearity A(S) contains 
N«(}, r/2». 

We have shown tha.t the closure of the image of a sphere centered at 
the origin contains such a sphere in Y, but it remains to be shown that 
the image itself, rather than its closure, contains a sphere. For any i:> 0, 
let S(8) and P(8) be the spheres in X, Y, respectively, of radii 8 centered 
at the origins. Let 80 > 0 be arbitrary and let '10 > 0 be chosen so that 
P('1o) is a sphere contained in the closure of the image of S(80). Let y 
be an arbitrary point in P('1o). We show that there is an x E S(280) such 
that Ax = y so that the image of the sphere of radius 2110 contains the 
sphere P('1o). I 

Let {Si} be a sequence of positive numbers such that Ii";,! 6; " 60' Then 
there is a sequence {'11}, with '11 > 0 and '11-+ 0, such that 
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Since A(S(llo)) is dense in peso), there is an Xo e S(60) such that y - Axo e 
P('1t). It follows that there is an XI e 5(61) with y - Axo - AXI eP('12)' 
Proceeding inductively, a sequence {x.} is defined with X. e S(6.) and 
y-A(l:r<=ox/)eP('1.+')' Let z.=xo+x,+"·+x •. Then evidently 
{z.} is a Cauchy sequence since form > n, liz,. - z.11 = Ilx.-, + X. -2 + ... + 
xmll <6.+1+6.+ 2 +···+6m • Thus there is an xeX such that 
Zn -+ x. Furthermore, Ilxll < 60 + 6, + ... + 6. + ... < 260; so X e 5(260)' 
Since A is continuous, Az. -+ Ax, but since Ily - Az.11 < '1.+ 1 -+ 0, 
Az. -+ y. Therefore, Ax = y. I 

ADJOINTS 

6.5 Definition and Examples 

The constraints imposed in many optimization problems by differential 
equations, matrix equations, etc., can be described by linear operators. 
The resolution of these problems almost invariably calls for consideration 
of an associated operator: the adjoint. The reason for this is that adjoints 
provide a convenient mechanism for describing the orthogonality and 
duality relations which permeate nearly every optimization analysis. 

Definition. Let X and Y be normed spaces and let A E B(X, Y). The adjoint 
operator A*: y* -+ X* is defined by the equation 

(x, A*y* > = (Ax, y*). 

This important definition requires a bit of explanation and justification. 
Given a fixed y* eY*, the quantity (Ax, y*) is a stalar for each x eX 
and is therefore a functional on X. Furthermore, by the linearity of y* and 
A, it follows that this functional is linear. Finally, since 

I(Ax, y*)1 :s; Ily*IIIIAxll :s; Ily*IIIIAllllxll, 
it follows that this functional is bounded and is thus an element x* of X*. 
We then define A*y* = x*. The adjoint is obviously unique and the reader 
can verify that it is linear. It is important to remember, as illustrated in 
Figure 6.1, thatA*: y* -+ X*. 

X*~ A* - r* 

Figure 6.1 An operator and its adjoint 
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In terms of operator, rather than bracket, notation the definition of the 
adjoint satisfies the equation 

y*(Ax) = (A*y*)(x) 

for each x E X. Thus we may write 

y*A = A*y* 

where the left side denotes the functional on X which is the composition 
of the operators A and y* and the right side is the functional obtained by 
operating on y* by A * . 
Theorem 1. The adjoint ,operator A* of the linear operator A E B(X, Y) is 
linear and bounded with II A * II = II A II· 

Proof The proof of linearity is elementary and left to the reader. 
From the inequalities 

I(x, A*y*)1 == I(Ax, Y*)I ~ Ily*IIIIAxll ~ 1IY*IIIIAllllxll 
it follows that 

IIA*y*11 ~ IIAIlIIY*11 
which implies that 

IIA*II ~ IIAII· 
Now let Xo be any nonzero element of X. According to Corollary 2 of 

the Hahn-Banach theorem, there exists an element y~ E Y*, IIY~II == 1, 
such that (Axo , y~) = II Axo II. Therefore, 

IIAxo11 = I(xo, A*Y~)I ~ IIA*Y~llllxoll ~ IIA*llllxoll 
from which we conclude that 

IIAII~ IIA*II 
It now follows that IIA*II = IIAII· I 

In addition to the above result, adjoints enjoy the following algebraic 
relations which follow easily from the basic definition. 

Proposition 1. Adjoints satisfy the following properties: 

1. If I is the identity operator on a normed space X, then 1* == I. 
2. If A 1, A2 E B(X, Y), then (A1 + A 2)* = A! + A~. 
3. If A E B(X. Y)andrx isa real scalar, then (rxA)* == e<A*. 
4. If Al EB(X, Y), A~: E B(Y, Z), then (A2 A 1)* = A1A!. 
5. If A E B(X, Y) and A has a bounded inverse, then (A -1)* = (A *) -1. 
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Proof Properties 1-4 are trivial. To prove property 5, let A E B(X, Y) 
have a bounded inverse A -1. To show that A* has an inverse, we must show 
that it is one-to-one and onto. Let yt =/: y~ € Y*, then 

, ,'. \,' c' ':1,"".· <x, A*yt) - <x, A*y~> = (Ax, yt - y~> =/: ° 
for some x E X. Thus, A*yf =/: A*yi and A* is one-to-one. Now for any 
x* E X* and any x E X, Ax = y, we ha,ve 

(x, x*) = <A- 1y, x*) = <y, (A- 1)*x*) 

= <Ax, (A- 1)*.x*) = <x, A*(A- 1)*x*) 

which shows that x* is in ~(A*) and also that (A*) -1 = (A -1)*. I 
An important special case is that of a linear operator A : H ~ G where 

Hand G are Hilbert spaces. If Hand G are real, then they are their own 
duals in the sense of Section 5.3, and the operator A* can be regarded as 
mapping G into H. In this case the adjoint relation becomes (Ax I y) = 
(x I A*y). If the spaces are complex, the adjoint, as defined earlier, does not 
satisfy this relation and it is convenient and customary to redefine the 
Hilbert space adjoint directly by the relation (Ax I y) = (x I A * y). In our 
study, however, we restrict our attention to real spaces sO that difficulties 
of this nature can be ignored. 

Note that in Hilbert space we have the additional property: A** = A. 
Finally, we note the following two definitions. 

Definition. A bounded linear operator A mapping a real Hilbert space into 
itself is said to be self-adjoint if A * = A. 

Definition. A self-adjoint linear operator A on a fIilbert space H is said to 
be positive semidefinite if (x I Ax) 2 ° for all x E H. 

Example 1. Let X = Y = En. Then A: X -t X is represented by an n x n 
matrix. Thus the i-th component of Ax is 

n 
(Ax);= 'LaijXj. 

J=1 

WecomputeA*. Fory EYwe have 
n n n n 

(Axl y) = L LYialjXj = L Xj l>ijYi = (xIA*Y) 
1=1 j=1 j= 1 1"'1 

where A* is the matrix with elements au = ajl' Thus A* is the transpose 
of A. 

Example 2. Let X = Y = L2 [0, 1] and define 
1 

Ax = t K(t, s)x(s) ds, t E [0, 1J 
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where 
1 1 

fo fo IK(t, sW ds dt < 00. 

Then 

(Ax I y) = (y(t):J; K(t, S)X(s)dsidt 

1 1 

= f XeS) f K(t, s)y(t) dtds. 
o 0 

Or, by interchanging the roles of sand t, 

1 1 

(Ax I y) = fo x(t) fo K(s, t)y(s) ds dt = (x I A*y) 

where 
1 

A*y = fo K(s, t)y(s) ds. 

Therefore, the adjoint of A is obtained by interchanging sand tin K. 

Example 3. Again let X = Y = L 2 [0, 1] and define 
t 

Ax = foK(t, s)x(s) ds, t E [0, 1J, 

with 
1 1 

fo fo IK(t, sW dt ds < 00. 

Then 
1 t 

(Ax I y) = fo yet) fo K(t, s)x(s) ds dt 

1 t 

= fo fa y(t)K(t, s)x(s) ds dt. 
, 

The double integration represents integration over the triangular region 
shown in Figure 6.20, integrating vertically and then horizontally. Alter
natively, the integration may be performed in the reverse order as in Figure 
6.2b, leading to 

1 1 t 

(Ax I y) = f f y(t)K(t, s)x(s) dt ds 
o a 

= (X(S)({K(t, s)y(t) dt) ds. 
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s s 

(0) (b) 

Figure 6.2 Region of integration 

Or, interchanging the roles of t and s, 

(Ax\y)= S:X(t)({K(S,t)y(S)dS) dt=(x\A*y) 

where 
1 

A * y = J K(s, t)y(s) ds. 
I 

This example comes up frequently in the study of dynamic systems. 

Example 4. Let X = C [0, 1], Y = en and define A : X -+ Y by the equation 

Ax = (x(t l ), x(t2), ... , x(tn» 

where ° :::;; t 1 < t2 < t2 < '" < tn :::;; 1 are fixed. It is easily verified that A 
is continuous and linear. Let y* = (YI' Y2' .. ~ , Yn) be a linear functional 
on En. Then 

n I 

(Ax, y*) = L YIX(t l ) = f x(t) dv(t) = (x, A,*Y*) 
1= 1 0 

where vet) is constant except at the points tt where it has a jump of magni
tude Yi' as illustrated in Figure 6.3. Thus A*: en -+ NBV[O, 1] is defined 
by A*y* = v. 

v 

... r 
'-_L--___ ~ • •• 2 I I >- t 
o tl t2 tn 1 

Figure 6.3 The function v 
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6.6 Relations Between Range and Nullspace 

Adjoints are extremely useful in our recurring task of translating between 
the geometric properties and the algebraic description of a given problem. 
The following theorem and others similar to it are of particular interest. 

Theorem 1. Let X and Y be normed spaces and let A E B(X, Y). Then 

[.~(A)]l :0" ';v(A*). 

Proof. Let y* E .;V(A*) and y E 9P(A). Then y = Ax for some x EX. 

The calculation <y, y*) = <Ax, y*) = <_'i:', A*y*) = 0 shows that .;V(A*) c 
[9P(A)].l. 

Now assume y* e [9P(A)].l. Then for every x E X, <Ax, y*) = O. This 
implies <x, A*y*) = 0 and hence that [9P(A)].l c ';v(A*). I 

Example 1. Let us c:onsider the finite-dimensional version of Theorem 1. 
Let A be a matrix; A: En -+ Em. A consists of n column vectors aj, 
i = 1,2, ... , n, and ~(A) is the subspace of Em spanned by these vectors. 
[9l(A)].l consists of those vectors in Em that are orthogonal to each al. 

On the other hand, the matrix A* (which is just the transpose of A) has 
the a/s as its rows; hence the vectors in Em orthogonal to a/s comprise the 
nullspace of A*. The:refore, both [9P(A)].l and .;V(A*) consist of all vectors 
orthogonal to each Gf l • 

Our next theorem is a dual to Theorem 1. It should be noted, however, 
that the additional hypothesis that 9P(A) be closed, is required. Moreover, 
the dual theorem is much deeper than Theorem 1, since the proof requires 
both the Banach inverse theorem and the Hahn-Banach theorem. 

Lemma 1. Let X and Y be Banach spaces and let A e B(X, Y). Assume that 
9P(A) is closed. Then there is a constant K such that for each y E 9P(A) there 
is an x satisfying Ax = y and IIxlt ~ Kllyll. 

Proof Let N = .;V(A) and consider the space XI N consisting of equiva
lence classes [x] modulo N. Define A: XIN -+ 9P(A) by A[x] = Ax. It is 
easily verified that ,4 is one-to-one, onto, linear; and bounded. Since 9P(A) 
closed implies that 9l(A) is a Banach space, it follows from the Banach 
inverse theorem th:at A has a continuous inverse. Hence, given y E 9l(A), 
there is [x] e XIN with \I[x]\I ~ \lJ-l\1\1y\l. Take x e [x] with 
\lxll ~ 2 II [x] II and then K = 211A- 1 11 satisfies the ~onditions stated in the 
lemma. I 

N oW we give the dual to Theorem 1. 
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Theorem 2. Let X and Y be Banach spaces and let A E B(X, Y). Let fA(A) be 
closed. Then 

~(A*) = [%(A)]J.. 

Proof Let x* E ~(A*). Then x* = A*y* for some y* E Y*. For any 
x E %(A), we have 

(x, x*) = (x, A*y*) = (Ax, y*) = O. 

Thus x* E [%(A)]J. and it follows that ~(A *) c:: [%(A)]J.. 
Now assume that x* E [%(A)]J.. For y E &leA) and each x satisfying 

Ax = y, the functional (x, x*) has the same value. Hence, define fey) = 
(x, x*) on ~(A). Let Kbe defined as in the lemma. Then for eachy E ~(A) 

there is an x with Ilxll ~ Kllyll, Ax = y. Therefore, If(y) I ~ Kllx*llllyll 
and thusfis a bounded linear functional on ~(A). Extendfby the Hahn
Banach theorem to a functional y* E Y*. Then from 

(x, A*y*) = (Ax, y*) = (x, x*), 

it follows that A*y* = x* and thus ~(A*) .:J [%(A)]J.. I 

In many applications the range of the underlying operator is finite 
dimensional, and hence satisfies the closure requirement. In other problems, 
however, this requirement is not satisfied aid this generally leads to severe 
analytical difficulties. We give an example of an operator whose range is 
not closed. 

Example 2. Let X = Y = II with A: X -+ Y defined by 

Then ~(A) contains all finitely nonzero sequences and thus ~(A) = Y. 
However, 

{
II I } 

y = 1, 22 ' 32 "'" n2 "" ¢ ~(A) 

and thus ~(A) is not closed. 

In Hilbert space there are several additional useful relations between 
range and nullspace similar to those which hold in general normed space. 
These additional properties are a consequence of the fact that in Hilbert 
space an operator and its adjoint are defined on the same space. 
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Theorem 3. Let A be a bounded linear operator acting between two real 
Hilbert spaces. Then 

1. [&l(A)JJ. = %(A*). 

2. &leA) = [%(A*)]J.. 
3. [&l(A*)]J. = %(A). 

4. &l(A*) = [%(A)JJ.. 

Proof. Part 1 is just Theorem 1. To prove part 2, take the orthogonal 
complement of both sides of 1 obtaining [&l(A)]J.J. == [%(A*)JJ.. Since 
&leA) is a subspace, the result follows. Parts 3 and 4 are obtained from 
1 and 2 by use of the relation A** = A. I 

Example3. Let X = Y = 12, For x = {el> e2.·. ,},defineAx = {O, el, e2, .. . }. 
A is a shift operator (sometimes referred to as the creation operator because 
a new component is created). The adjoint of A is easily computed to be the 
operator taking y == {111> 11", ..• } into A*y = {11", 113' ... }, which is a 
shift in the other direction (referred to as the destruction operator). It is 
clear that [&l(A)JJ. consists of all those vectors in I" that are zero except 
possibly in their first component; this subspace is identical with %(A*). 

6.7 Duality Relations for Convex Cones 

The fundamental algebraic relations between nullspace and range for an 
operator and its adjoint derived in Section 6.6 have generalizations which 
often playa role in the analysis of problems described by linear inequalities 
analogous to the role of the earlier results to problems described by linear 
equalities. 

Definition. Given a set S in a normed space X, the set SfD = {x* e X*: 
(x, x*) ::::: 0 for all xeS} is called the positive conjugate cone of S. Like
wise the set Sa == {x* e X* : (x, x*) s; 0 for all xeS} is called the 
negative conjugate cone of S. 

It is a simple matter to verify that SfD and Sa are in fact convex cones. 
They are nonempty since they always contain the zer9 functional. If S is a 
subspace of X, then obviously SfD = Sa = SJ.; hence, the conjugate cones 
can be regarded as generalizations of the orthogonal complement of a set. 
The definition is illustrated in Figure 6.4 for the Hilbert space situation 
where SfD and Sa can be regarded as subsets of X. The basic properties 
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\ 
\ 

/ 
I 

Figure 6.4 A set and its conjugate cones 

of the operation of taking conjugate cones are given in the following 
proposition. 

Proposition 1. Let Sand T be sets in a nor'{led space X. Then 

1. S$ is a closed conVeX cone in X*. 
2. IfS c: T, then T$ c: S$. 

In the general case the conjugate cone can be interpreted as a collection 
of half·spaces. If x* E S $, then clearly inf <x, x*) ~ 0 and hence the 

xeS 

hyperplane {x: <x, x*) = o} has S in its positive half-space. Conversely, 
if x* determines a hyperplane having S in its positive half-space, it is a 
member of S $. Therefore, S $ consists of all x* which contain S in their 
positive half-spaces. 

The following theorem generalizes Theorem I of Section 6.6. 

Theorem 1. Let X and Y be normed linear spaces and let A E R(X, Y). Let S 
be a subset of X. Then 

(where the inverse denotes the inverse image of SEll). 

Proof Assume y* E [A(S)]$ and s E S. Then <As, y*) ~ 0 and hence 
<s, A*y*) ~ O. Thus, since s is arbitrary in S, y* E A*-l(S$). The argu
ment is reversible. I 
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Note that by putting S = X, SGl = {O}, the above result reduces to 
[B£(A)]i = ,Ai(A*). 

*6.8 Geometric Inlterpretation of Adjoints 

It is somewhat diffic:ult to obtain a clear simple visualization of the relation 
between an operat()r and its adjoint since if A : X ~ Y, A* : Y* .... X*, 
four spaces and two operators are involved. However, in view of the unique 
correspondence between hyperplanes not containing the origin in a space 
and nonzero elements of its dual, the adjoint A* can be regarded as map
ping hyperplanes in Y into hyperplanes in X. This observation can be used 
to consolidate the adjoint relations into two spaces rather than four. We 
limit our discussion here to invertible operators between Banach spaces. 
The arguments can be extended to the more general case, but the picture 
becomes somewhat more complex. 

Let us fix our attention on a given hyperplane HeX having 0 ¢ H. 
The operator A maps this hyperplane point by point into a subsetL of Y. 
It follows from the linearity of A that L is a linear variety, and since A is 
assumed to be invertible, it follows that L is in fact a hyperplane in Y not 
containing 0 e Y. Therefore, A maps the hyperplane H point by point into 
a hyperplane L. 

The hyperplanes Hand L define unique elements x! e X* and y! e y* 
through the relations H = {x: (x, x!> = I}, L = {y: (y, y'l) = I}. The 
adjoint operator A* can then be applied to y! to produce an xt or, 
equivalently, A * maps L into a hyperplane in X. In fact, A * maps L back 
to H. For if A*yt := xt, it follows dim;tly from the definition of adjoints 
that {x: (x, xt> = I} = {x: (x, A*yt) = I} = {x: (Ax, y!> '= l} = H. 
Therefore, A * maps the hyperplane L, as a unit, ba~k to the hyperplane H. 
This interpretation is illustrated in Figure 6.5 where the dotted line arrows 
symbolize elements of a dual space. 

Another geometI'ic interpretation is discussed in Problem 13. 

'\ 
-----~.::----- - .............. ------ ...... 

... ..--~lt -""- ........ " 

'\~ 1 ~.:: . ' 9 

Figure 6.5 Geometric interpretation of adjoints 
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OPTIMIZATION IN HILBERT SPACE 

Suppose A is a bounded linear operator from a Hilbert space G into a 
Hilbert space H; A : G - H. Then, as pointed out previously, the linear 
equation Ax = y may, for a given Y E H, 

1. possess a unique solution x E G, 
2. possess no solution, 
3. possess more than one solution. 

Case 1 is in many respects the simplest. We found in Section 6.4 that in 
this case A has a unique bounded inverse A - 1. The other two cases are of 
interest in optimization since they allow some choice of an optimal x to 
be made. Indeed, most of the problems that were solved by the projection 
theorem can be viewed this way. 

6.9 The Normal Equations 

When no solution exists (case 2), we resolve the problem by finding an 
approximate solution. 

Theorem 1. Let G and H be Hilbert ~paces and let A E B(G, lJ). Then 
for a fixed y E H the vector x E G minimizes lIy - Axil if and only if 
A*Ax = A*y. 

Proof The problem is obviously equivalent to that of minimizing 
lIy - yll where y E ~(A). Thus, by Theorem 1, Section 3.3 (the projection 
theorem without the existence part), y is a minimizing vector if and only if 
y - y E [~(A)J.L. Hence, by Theorem 3 of Section 6.6, y - Y E ';v(A*). Or 
() = A*(y - y) = A*y - A*Ax. I 

Theorem I is just a restatement of the first form of the projection theorem 
applied to the subspace ~(A). There is no statement of existence in the 
theorem since in general ~(A) may not be closed. Furthermore, there is no 
statement of uniqueness of the minimizing vector x since, although 
y = Ax is unique, the preimage of y may not be unique. If a unique 
solution always exists, Le., if A * A is invertible, the solution takes the form 

x = (A*A)-IA*y. 

Example 1. We consider again the basic approximation problem in Hilbert 
space. Let {xl' X2' ... , x n} be an independent set of vectors in a real 
Hilbert space H. We seek the best approximation to y € H of the form 

y=t?=la,Xj. 



§6.JO THE DUAL PROBLEM 161 

Define the operator A : E" -+ H by the equation 

• 
Aa = L a/xI, 

i= I 

where a = (ai' "', a.). The approximation problem is equivalent to 
minimizing lIy - Aall. Thus, according to Theorem 1, the optimal solution 
must satisfy A * Aa =: A *y. 

It remains to compute the operator A*. Clearly, A*:H-tE·. For any 
x E H, a E E", we have 

" n 
(x I Aa) = (x I L a/ XI) = L al(x I Xi) = (z I a)En 

i= 1 i=l 

'. 
where z = «x I XI)' ... , (x I x.)). Thus, A*x == «x I XI)' (x I x 2 ), "', (x I x.)). 

The operator A*A maps E· into E· and is therefore represented by an 
n x n matrix. It is then easily deduced that the equation A * Aa = A*y i~ 
equivalent to 

[

(XIIXI) (x2Ixl) ... (X.IXI)]al] (YIXI)] 
(XI I x2) a2 (y I X2) 

: : = : ' . . . 
(xlix.) (X. I x") a. (y I x.) 

the normal equations. 
The familiar arguments for this problem show that the normal equations 

possess a unique solution and that the Gram matrix A * A is invertible. 
Thus, a = (A*A)-IA*y. 

The above example illustrates that operator notation can streamline an 
optimization analysis by supplying a compact notational solution. The 
algebra required to compute adjoints and reduce the equations to expres
sions involving the original problem variables is, however, no shorter. 

6.10 The Dual Problem 

If the equation Ax = y has more than one solution, we may choose the 
solution having minimum norm. 

Theorem 1. Let G and H be Hilbert spaces and let A E B(G, H) with 
range closed in H. Then the vector x of minimum. norm satisfying Ax = y 
is gh'en by x = A*z where z is any solution of AA*z = y. 

Proof If XI hi a solution of Ax = y, the general solution is x = XI + u 

where U E %(A). Since %(A) is closed, it follows that there exists a unique 
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vector x of minimum norm satisfying Ax = y and that this vector is orthog
onal to %(A). Thus, since ~(A) is assumed closed, 

x E [%(A)]l == ~(A*). 

Hence x = A*z for some z E II, and since Ax = y, we conclude that 
AA*z=y. I 

Note that if, as is frequently the case, the operator AA* is invertible, 
the optimal solution takes the form 

X == A*(AA*)-ly. 

Example 1. Suppose a linear dynamic system is governed by a set of 
differential equations of the form 

x(t) = Fx(t) + bu(t) 

where x is an n x I vector of time functions, F is an n x n matrix, b is an 
n X 1 vector, and u is a scalar control function. 

Assume that x(o) = () and that it is desired to transfer the system to 
x(T) = x I by application of suitable controL Of the class of controls which 
accomplish the desired transfer, we seek \he one of minimum energy 
Jl u2(t) dt. The problem includes the motor problem discussed in Chapter 3. 

The explicit solution to the equation of motion is 

T 
x(T) = J eF(T-t)bu(t) dt. 

o 

Thus, defining the operator A : L2 [0, TJ -+ En by 

T 
Au = fo eF(T-t)bu(t) dt, 

the problem is eqUivalent to that of determining the u of minimum norm 
satisfying Au == Xl' 

Since ~(A) is finite dimensional, it is closed. Thus the results of Theorem 
1 apply and we write the optimal solution as 

u = A*z 
where 

AA*z = Xl' 

It remains to calculate the operators A* and AA*. For any u E L 2' 

YE En 
T T 

(y I AU)En = y' fo eF(T-tlbu(t) dt = fo y' eF(T-t)bu(t) dt 

== (A*Y I U)L2 
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where 
A*y = b'eF'(T-t)y. 

Also, AA* is the n x n matrix, 
T 

AA* = fo eF(T-t)bb'eF'(T-t) dt. 

If the matrix AA* is inv,ertible, the optimal control can be found as 

u = A*(AA*)-IXI . 

6.11 Pseudoinverse Operators 

We now develop a mor.~ general and more complete approach to the prob
lem of finding approximate or minimum norm solutions to Ax = y. The 
approach leads to the c:oncept of the pseudo inverse of an operator A. 

Suppose again that G and H are Hilbert spaces and that A e B(G, H) 
with E/9(A) closed. (In applications the Closure of E/9(A) is usually supplied 
by the finite dimensionality of either G or H). 

Definition. Among all vectors Xl e G satisfying 

IIAxI - yll = min IIAx - yll, 
" 

let Xo be the unique vector of minimum norm. The pseudoinverse A t of A 
is the operator mapping y into its corresponding Xo as y varies over H. 

To justify the above definition, it must be verified that there is a unique 
Xo corresponding to each y e H. We observe first that min IIAx - yll is 

" achieved since this amounts to approximating y by a vector in the closed 
subspace E/9(A). The approximation y = AXI is unique, although Xl may 
not be. 

The set of vectors Xl satisfying Ax 1 = y is a linear variety, a translation 
of the subspace .;V(A). Thus, since this variety is closed, it contains a 
unique Xo of minimum norm. Thus At iS,well defined. We show below that 
it is linear and bounded. 

The above definitio!tl of the pseudo inverse is somewhat indirect and 
algebraic. We can develop a geometric interpretation of At so that certain 
of its properties become more transparent. 

According to Theorem 1, Section 3.4, the space G can be expressed as 
I 

G = %(A) E6' %(A)J.. 

Likewise, since E/9(A) is assumed closed, 

H = 9l!(A) $ :;P(Al. 
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A 

Figure 6.6 The pseudo inverse 

The operator A restricted to ,AI'(A).L can be regarded as an operator from 
the Hilbert space ,AI'(A).L onto the Hilbert space &l(A). Between these 
spaces A is one-to-one and onto and hence has a linear inverse which, 
according to the Banach inverse theorem, is bounded. This inverse 
operator defines A t on &leA). Its domain is extended to all of H by defining 
Aty = () for y E &l(A).L, Figure 6.6 shows this sChematically and Figure 6.7 
gives a geometric illustration of the relation of the various vectors in the 
problem. 

It is easy to verify that this definition of A t is in agreement with that of 
the last definition. Any y E H can be expressed uniquely as y == y + Yl 
where ye &leA), Yl E &l(A).L, Thus y is the best approximation to y in 
&leA). Then Aty == At(y + YI) = Aty. Define Xo = Aty. Then by definition 
Axo = y. Furthermore, Xo E ,AI'(A).L and is therefore the minimum norm 
solution of Ax 1 = y. 

The pseudoinverse possesses a number of algebraic properties which are 
generalizations of corresponding properties for inverses. These properties 
are for the most part unimportant from our viewpoint of optimization; 
therefore they are not proved here but simply stated below. 

Figure 6.7 Relation between y and Xo 
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Proposition 1. Let A be a bounded linear operator with closed range and 
let A t denote its pseua'oinverse. Then 

1. A t is linear. 
2. A t is bounded. 
3. (At)t = A. 
4. (A*)t = (At)*. 
5. AtAAt = At. 
6. AAtA = A. 
7. (AtA)*=AtA. 
8. At = (A*A)tA*. 
9. At = A*(AA*)t. 

In certain limiting cases it is possible to give a simple explicit formula 
for At. For instance, if A * A is invertible, then At = (A * A) -I A *. If AA * is 
invertible, then At ==A*(AA*)-I. In general, however, a simple formula 
does not exist. 

Example 1. The pseudoinverse arises in connection with approximation 
problems. Let {Xl> X2'" •• xn} be a set of vectors in a Hilbert space H. 
In this example, however, these vectors are not assumed to be independent. 
As usual, we seek the best approximation of the form y = Li"1 al XI to 
the vector y. Or by dl:fining A: En -+ Hby 

n 

Aa = Laixj, 
1= 1 

we seek the approximation to Aa = y. If the vector a achieving the best 
approximation is not unique, we then ask for the a of smallest norm which 
givesy. Thus 

ao = Aty. 

The computation of A t can be reduced by Proposition 1 to 

At = (A*A)tA* 

so that the problem reduces to computing the pseudoinverse of the n x n 
Gram matrixA* A =: G(Xj' X2' ... , xn). 

6.12 Problems 

1. Let X = L 2 [0, 1] and define A on Xby 

1 

Ax = t K(t. S)X(S) ds 
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where 

1 1 

fo fo IK(t, s)1 2 dt ds < 00. 

Show that A : X ....... X and that A is bounded. 
2. Let X = LlO, I], I < p < 00, Y =:: LlO, 1], lip + I/q = 1. Define 

Aby 

1 

Ax = 50 K(t, s)x(s) ds. 

Show that A E R(X, Y) if SA HIK(t, s)lq dt ds < 00. 

3. Let A be a bounded linear operator from Co to 1(fJ' Show that cor
responding to A there is an infinite matrix of scalars IXij' i, j = 
1, 2, ... , such that y = Ax is expressed by the equations 

where y = {Ili}' x = g i}, and the norm of A is given by 

00 

IIAII = sup I: IIXul. 
i j= 1 

4. Prove the two-norm theorem: If X is a Banach space when normed 
by 11111 and by II liz and if there is a constant c such that Ilxlll S c Ilxllz 
for all x E X, then there is a constant C such that Ilxll z s C Ilxll l for 
all x EX. 

5. The graph of a transformation T: X ....... Y with domain D c X is the 
set of points (x, Tx) E X X Y with xED. Show that a bounded linear 
transformation with closed domain has a closed graph. 

6. Let X = C [a, b] = Y and let D be the subspace of X consisting of all 
continuously differentiable functions. Define the transformation T on 
D by Tx = dx/dt. Show that the graph of Tis closed. 

7. Prove the closed graph theorem: If X and Yare Banach spaces and T 
is a linear operator from X to Y with closed domain and closed graph, 
then Tis bounded. 

8. Show that a linear transformation mapping one Banach space into 
another is bounded if and only if its nulls pace is closed. 

9. Let H be the Hilbert space of n-tuples with inner product (x I Y)Q = 
x' Qy where Q is a symmetric positive-definite matrix. Let an operator 
A on H be defined by an n x n matrix [aijJ in the usual sense. Find 
the matrix representation of A *. 
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10. Let X = Lp [0, 1], 1 < p < 00, Y = Lq [0,1], lip + llq = 1. Let 
A e B(X, Y) be d.efined. by Ax iF J& K(t, s)x(s) ds where 

1 1 f f IK(t, s)lq dt ds < 00. 
o 0 

(See Problem 2.) Find A*. 
11. Let X and Y be normed spaces and let A e B(X, Y). Show that 

.L[Bl(A*)] = %(A). (See Section 5.7.) 
12. Let X, Y be Banach spaces and let A e B(X, Y) have closed range. 

Show that 

inf IIxll = max (b, y*). 
Ax=b IIA·y·II:sI 

Use this result to reinterpret the solution of the rocket problem of 
Example 3, Section 5.9. 

13. Let X and Y be normed spaces and let G be the graph in X x Y of an 
operator A E B(X, Y). Show that G.L is the graph of -A* in X* x Y*. 

14. Prove the Minkowski-Farkas lemma: Let A be an m x n matrix and 
b an n-dimensicmal vector. Then Ax:;:; (J implies b'x :;:; 0 if and only 
ifb = A'A for s>ome m-dimensional vector A:2: (J. Give a geometric 
interpretation of this result. (Ineq.,alities among vectors are to be 
interpreted comjponentwise.) 

15. Let M be a closed subspace of a Hilbert space H. The operator P 
defined by Px == m, where x = m + n is the unique representation of 
x E H with m e M, n e M.L, is called the projection operator onto M. 
Show that a projection operator is linear and bounded with IIPII = 1 
if M is at least OIt1e dimensional. 

16. Show that a bounded linear operator on a Hilbert space H is a pro
jection operator if and only if: 

1. pZ = P (idempotent) 
2. p* = P (self-adjoint). 

17. Two projection operators PI and Pz on a Hilbert space are said to be 
orthogonal if PIPZ = O. Show that two projection operators are 
orthogonal if and only if their ranges are orthogonal. 

18. Show that the sum of two projection operators is a projection operator 
if and only if th~~y· are orthogonal. 

19. Let G and H be Hilbert spaces and suppose A E B(G, H) with Bl(A) 
closed. Show that 

At = lim (A* A + 81)-1 A* = lim A*(AA* + 81)-1 
1:-+0+ £-+0+ 

where the limits represent convergence in B(H, G). 
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20. Find the pseudoinverse of the operator A on E 3 defined by the matrix 

[i i bj. 
J 1 0 

21. Let G, H, K be Hilbert spaces and let B E B(G, K) with range equal to 
K and C E B(K, H) with nulls pace equal to {O} (i.e., B is onto and C 
is one-to-one). Then for A = C B we have At = Bt ct. 
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