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Lecture 8

Differential Algebraic Equations

Rosenbrock System Matrix

Course Review

Suggested reading: T. Kailath Linear Systems, Chapter 8 (link
available in the email).
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Differential Algebraic Equation

Models of physical systems are often on the form

0 = F (ẋ, x, t)

If x and ẋ enter linearly we get

Eẋ = Ax+ f(t)

Linear Differential Algebraic Equation (DAE)

Any linear differential equation with higher order derivatives can be
brought into this form by augmenting the state vector.

E might not be invertible
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Example: Two Tank System

Flow: q, Volumes: V1, V2, Concentrations: u(t), x1(t), x2(t)

Dynamics: {
V1ẋ1 + qx1 = qu

V2ẋ2 − qx1 + qx2 = 0

ẋ =
[
− 1
V1

0
1
V2

− 1
V2

]
qx+

[
1
V1
0

]
qu

If V1 = 0 or V2 = 0, the system becomes first order

Often simulation code, controller design methods etc have problems to
treat such special cases easily
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Example: Rotating Masses

J1ω̇1 = Ql1 +Qr1 θ̇1 = ω1

J2ω̇2 = Ql2 +Qr2 θ̇2 = ω2

Qr1 = d(ω2 − ω1) Qr1 = −Ql2
where Ql1 and Qr2 are known time functions and J1, J2 and d are
parameters. How is e.g. the case J2 = 0 treated?
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Example

General Robot Model

Jẍ(t) +Dẋ(t) +Kx(t) = f(t)

where J , D and K are matrices

Often good to use physical variables and "natural" equations

Interconnection of subsystems

How can a general system of linear differential equations be
transformed, and what is the most simple form?
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Example: A Differentiator

Cv̇c = i

1
K
vout = −(vin − vc)

vout = vin − vc −Ri

If 1/K = 0, then vout = −RCv̇in.
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Example continued

With
x =

[
vc vout i

]T
we have

sE −A =

sC 0 −1
1 −1/K 0
1 1 R

 , B =

0
1
1


H =

[
0 1 0

]

vout(s) = H(sE −A)−1B vin(s) = −RCs
RC
K s+ K+1

K

vin(s)

With E singular, we can describe nonproper transfer functions
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General description of linear systems

Physical system described by linear differential equations, input u,
output y and internal physical variables ζ

P (s)ζ = Q(s)u
y = R(s)ζ +W (s)u

Matrix notation with Rosenbrock system matrix P (s) Q(s)
−R(s) W (s)

−ζu
 =

0
y


The transfer function is

G(s) = R(s)P−1(s)Q(s) +W (s)
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Special cases

Right Fraction y = NRD
−1
R u : P =

 DR(s) I
−NR(s) 0


Left Fraction y = D−1

L NLu : P =
DL(s) NL(s)

I 0


State Space : P =

sI −A B
−C D


Descriptor : P =

sE −A B
−C D



9 / 26



LionSealWhite

Definition: Equivalence Transformations

Two systems are “equivalent” if there are unimodular matrices M1(s),
M2(s) and polynomial matrices X(s) and Y (s) such that(
M1(s) 0
X(s) I

)(
P1(s) Q1(s)
−R1(s) W1(s)

)
︸ ︷︷ ︸

P1

(
M2(s) Y (s)

0 I

)
=
(
P2(s) Q2(s)
−R2(s) W2(s)

)
︸ ︷︷ ︸

P2

It can be seen that this corresponds to natural transformations of
variables and equations.

Fact: Any Rosenbrock system matrix is equivalent to one in state
space form (

P (s) Q(s)
−R(s) W (s)

)
∼
(
sI −A B
−C J(s)

)
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Controllability and Observability

From the transformation to state space form(
M1(s) 0
X(s) I

)(
P (s) Q(s)
−R(s) W (s)

)(
M2(s) Y (s)

0 I

)
=
(
sI −A B
−C J(s)

)

we see that Smith forms are related as

P (s) ∼ sI −AP (s) Q(s)
 ∼

sI −A B
 P (s)

−R(s)

 ∼
sI −A−C


Controllability⇔ P,Q left coprime
Observability⇔ P,R right coprime
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Irreducibility

A system

P =
(
P (s) Q(s)
−R(s) W (s)

)

is called irreducible if P,Q are left coprime and P,R are right
coprime

All state space descriptions equivalent to P are then controllable and
observable, and hence minimal.

Consequence: All irreducible systems having the same transfer
function are equivalent.
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Poles and zeros

Transfer function on Smith-McMillan form

G(s) = U(s)
diag(εi(s)) 0

0 0

︸ ︷︷ ︸
E(s)

diag(ψi(s)) 0
0 Im−r

︸ ︷︷ ︸
ΨR(s)

−1
V (s)

System Matrix: P =
 ΨR(s) V (s)
−U(s)E(s) 0

 ∼ I 0
0 E(s)


Any other irreducible system P =

(
P (s) Q(s)
−R(s) W (s)

)
having the same

transfer function G(s) must be equivalent, therefore

The poles of G are given by detP (s) = 0
The zeros of G are given by the invariant polynomials of P
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Course review

Continuous time-varying linear (CT-LTV) system

ẋ(t) = A(t)x(t) +B(t)u(t)
y(t) = C(t)x(t) +D(t)u(t) (1)

Discrete time-varying linear (DT-LTV) system

x(k + 1) = A(k)x(k) +B(k)u(k)
y(k) = C(k)x(k) +D(k)u(k) (2)
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Time-domain analysis: solutions and transition matrix

Solution to CT-LTV system: with transition matrix Φ(t, t0)

x(t) = Φ(t, t0)x0 +
∫ t

t0
Φ(t, σ)B(σ)u(σ)dσ

y(t) = C(t)Φ(t, t0)x0 +
∫ t

t0
C(t)Φ(t, σ)B(σ)u(σ)dσ +D(t)u(t)

Special cases for the transition matrix Φ(t, t0):

CT-LTI system: Φ(t, t0) = eA(t−t0);

CT-LTV system with commutative A(t): If
A(t)

∫ t
t0
A(σ)dσ =

∫ t
t0
A(σ)dσA(t) then

Φ(t, t0) = exp
{∫ t

t0
A(σ)dσ

}
The AJL formula: det Φ(t, t0) = exp

(∫ t
t0

tr[A(σ)]dσ
)
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Time-domain analysis: stability

For CT-LTI system: stability determined by the eigenvalues of A:
A Hurwitz matrix (eigenvalues with negative real part) implies
asymptotic stability;
For CT-LTV system: stability is NOT determined by eigenvalues of
A(t).

Transition matrix conditions for stability x(t) of ẋ(t) = A(t)x(t):

uniformly stable if ∃γ > 0

‖Φ(t, t0)‖ ≤ γ, ∀t ≥ t0 ≥ 0

uniformly asymptotically stable if it is uniformly stable and
∀δ > 0 : ∃T > 0 :

‖Φ(t, t0)‖ ≤ δ, ∀t ≥ t0 + T, t0 ≥ 0

uniformly exponentially stable if ∃γ, λ > 0 such that

‖Φ(t, t0)‖ ≤ γe−λ(t−t0), ∀t ≥ t0 ≥ 0
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Time-domain analysis: stability by Lyapunov function

1. There exists η > 0, ρ > 0, Q(t):

ηI ≤ Q(t) ≤ ρI, AT (t)Q(t) +Q(t)A(t) + Q̇(t) ≤ 0
⇒ |x|2 ≤ ρ/η|x(t0)|2 ⇒ uniform stability

2. There exists η > 0, ρ > 0, ν > 0, Q(t):

ηI ≤ Q(t) ≤ ρI, AT (t)Q(t) +Q(t)A(t) + Q̇(t) ≤ −νI

⇒ |x|2 ≤ ρ
ηe
− ν
ρ

(t−t0)|x(t0)|2 ⇒ uniform exponential stability
(equivalent to uniform asymptotic stability).

3. There exists ρ > 0, ν > 0, Q(t), t0:

‖Q(t)‖ ≤ ρ, AT (t)Q(t) +Q(t)A(t) + Q̇(t) ≤ −νI
Q(t0) not pos. semidef. ⇒ not uniform stable

Under controllability and observability conditions: Uniform BIBO
stability (external stability)⇔ uniform exponential stability (internal
stability) 17 / 26
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Controllability and observability

Controllability Gramian

W (t0, tf ) =
∫ tf

t0
Φ(t0, t)B(t)B(t)TΦ(t0, t)Tdt

The state equation is controllable on (t0, tf ) if and only if the
controllability Gramian W (t0, tf ) is invertible (W (t0, tf ) > 0).

Observability Gramian:

M(t0, tf ) =
∫ tf

t0
Φ(t, t0)TC(t)TC(t)Φ(t, t0)dt

The system ẋ(t) = A(t)x(t), y(t) = C(t)x(t) is observable on
(t0, tf ) if and only if M(t0, tf ) > 0.
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Controllability and observability: CT-LTI systems

The following four conditions are equivalent (for controllability):

(i) The system ẋ(t) = Ax(t) +Bu(t) is controllable.
(ii) rank[B AB A2B . . . An−1B] = n.
(iii) λ ∈ C, pTA = λpT , pTB = 0 ⇒ p = 0.
(iv) rank [λI −A B] = n ∀λ ∈ C.

The following four conditions are equivalent (for observability):

(i) The system ẋ(t) = Ax(t), y(t) = Cx(t) is observable.

(ii) rank


C
CA

...
CAn−1

 = n.

(iii) λ ∈ C : Ap = λp, Cp = 0 ⇒ p = 0

(iv) rank
[
λI −A
C

]
= n ∀λ ∈ C.
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Realization

Conditions for realizability (time factorization from weighting pattern):
The weighting pattern G(t, σ) has a realization of dimension n if and
only if there exist matrix functions H(t) ∈ Rp×n, F (t) ∈ Rn×m such
that G(t, σ) = H(t)F (σ) ∀t, σ.

Conditions for minimal realisation: the realized linear system is
controllable and observable.

Algorithms for realization: Gilbert realization (partial fraction expansion
of transfer functions), Markov parameters etc.
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Least squares and minimum energy control

Least squares problem I: Minimize |Lu− v| with respect to u.
Solution: Any û satisfying the Orthogonality Property
0 =< Lx,Lû− v > for all x.
Or equivalently

L∗Lû = L∗v

Application: estimating initial state from LTV (LTI) system by output
measurement (under observability condition).

Least squares problem II: Minimize |u| under the constraint Lu = v.
Solution: Any û satisfying Lû = v and the Orthogonality Property
0 =< û, û− u > for all u with Lu = v.
Or, if LL∗ invertible, equivalently

û = L∗(LL∗)−1v (if LL∗ invertible)

Application: minimum-energy control for LTV (LTI) system with
boundary conditions (under controllability condition).
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0 =< û, û− u > for all u with Lu = v.
Or, if LL∗ invertible, equivalently
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Frequency-domain analysis: polynomial matrices

Polynomial matrix fraction descriptions (MFD) for MIMO transfer
functions:

Right polyomial MFD: G(s) = NR(s)DR(s)−1.
Left polynomial MFD: G(s) = DL(s)−1NL(s).

Coprime MFDs: unique up to unimodular matrix transformations:
For two coprime right MFDs G(s) = N1(s)D−1

1 (s) = N2(s)D−1
2 (s)

then there is a unimodular matrix U(s) such that

N1(s) = N2(s)U(s), D1(s) = D2(s)U(s)

The left MFD (sI −A)−1B is coprime ⇔ {A,B} is controllable.

The right MFD C(sI −A)−1 is coprime ⇔ {A,C} is observable.
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Frequency-domain analysis: polynomial matrices

Zeros and poles from MIMO transfer functions:
The Smith McMillan form

G(s) = P (s)
diag

(
εi(s)
ψi(s)

)
0

0 0

Q(s)

where P,Q are unimodular matrices and εi, ψi are without common
factors.

Using the Smith McMillan form one can determine

The roots of εi(s) as the system (transmission) zeros

The roots of ψi(s) as the system poles

(counted with multiplicities)
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Other topics

Some topics that we do not cover in the course

Feedback control (state feedback or output feedback)

State observation

LQR/LQG optimal control

Geometric theory in linear system

You will find them in the two textbooks (Rugh and Hespanha).
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Final exam

Problems in the final exam will be confined to those presented in the
lecture slides.

Skip the following topics from lecture slides

Time-varying transfer functions (for LTV/LTP systems), Lecture 2;

Balanced realizations and bonus contents, Lecture 3;

Feedback, well-posedness (for internal stability), Lecture 5;

Polynomial interpolation/function approximation with LS methods,
Lecture 6.

Final exam will be a 24-hour take-home exam. Date to be determined.
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THE END
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