Lecture 7

- Theory for polynomial matrices
- Hermite and Smith normal forms
- Smith McMillan form
- Poles and Zeros

Rugh Ch 16-17 (can skip proofs of 16.7,17.4,17.5,17.6)

Polynomial matrix fraction descriptions

There are two natural generalisation to the SISO description

$$
G(s)=\frac{n(s)}{d(s)}
$$

Right polyomial matrix fraction description:

$$
G(s)=N_{R}(s) D_{R}(s)^{-1} \quad\left\{\begin{array}{l}
D_{R}(s) X(s)=U(s) \\
Y(s)=N_{R}(s) X(s)
\end{array}\right.
$$

Left polynomial matrix fraction description

$$
G(s)=D_{L}(s)^{-1} N_{L}(s) \quad D_{L}(s) Y=N_{L}(s) U
$$

where $N_{R}, D_{R}, N_{L}, D_{L}$ are polynomial matrices

Left and Right MFDs - example

$$
G(s)=\left(\begin{array}{cc}
\frac{1}{s+2} & \frac{2}{s+1}
\end{array}\right)
$$

Right MFD

$$
G(s)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{cc}
s+2 & 0 \\
0 & s+1
\end{array}\right)^{-1}
$$

Left MFD

$$
G(s)=((s+2)(s+1))^{-1}\left(\begin{array}{ll}
s+1 & 2(s+2)
\end{array}\right)
$$

Note that the dimensions of D_{R} and D_{L} are not the same Note however that

$$
\operatorname{det} D_{R}(s)=\operatorname{det} D_{L}(s)=(s+2)(s+1)
$$

Questions

What properties can be seen from $D(s)$ and $N(s)$?
What are the poles and zeros?

Example: The MIMO system

$$
G(s)=\left(\begin{array}{cc}
\frac{s+1}{s+2} & 0 \\
0 & \frac{s+2}{s+1}
\end{array}\right)
$$

has poles in $-1,-2$ and zeros in $-1,-2$ (but in different "directions")
Note however that $\operatorname{det} G(s) \equiv 1$
How to cancel "common factors" in N and D ?

Common Factors of $N(s)$ and $D(s)$

$R(s)$ is said to be a common right divisor if $\exists \widetilde{N}(s), \widetilde{D}(s)$

$$
\binom{N(s)}{D(s)}=\binom{\tilde{N}(s)}{\widetilde{D}(s)} R(s)
$$

- $N(s) D^{-1}(s)=\widetilde{N}(s) \widetilde{D}^{-1}(s)$
- If $R(s)$ can be written $R(s)=S(s) \widetilde{R}(s)$ for every crd $\widetilde{R}(s)$, then $R(s)$ is a greatest common right divisor (gcrd)
- A polynomial matrix whose inverse is also polynomial is a trivial common factor. Such matrix is called "unimodular".
- If a gcrd of N and D is unimodular then N and D are said to be "right coprime"
- Common left divisor, gcld, left coprime are defined analogously for left MFDs

Unimodular Matrices

$A(s)$ unimodular $\Leftrightarrow \operatorname{det} A(s)$ is a nonzero constant

Proof:

If there is $B(s)$ with $A(s) B(s)=B(s) A(s)=I$, then $\operatorname{det} A(s) \cdot \operatorname{det} B(s)=1$ and both $A(s)$ and $B(s)$ have constant nonzero determinants.

If $A(s)$ has constant nonzero determinant then

$$
A(s) \operatorname{adj} A(s)=\operatorname{det} A(s) I=c I \neq 0
$$

and hence $A^{-1}(s)=\operatorname{adj} A(s) / c$ which is a polynomial matrix, hence $A(s)$ is unimodular

Unimodular Matrices

Examples of unimodular matrices

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{ccc}
1 & a(s) & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
a & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

When multiplying a matrix from the left they correspond to

- exchange of first two rows
- addition of $a(s)$ times second row to first row
- multiplication of first row by a

Elementary row (column) operations = unimodular matrix left (right) multiplication

Hermite Form - row operations version

For a polynomial matrix $P(s)$ with independent columns it is possible to find a unimodular matrix $U(s)$ (row operations) so

$$
U(s) P(s)=\left(\begin{array}{cccc}
\times & \times & \cdots & \times \\
0 & \times & \cdots & \times \\
0 & 0 & \ddots & \vdots \\
\vdots & \vdots & & \times \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right)
$$

where diagonal elements are

- nonzero, monic polynomials
- of higher degree than elements in the same column

Hermite Form - column operation version

For a matrix with independent rows, an analogous lower triangular form can be obtained by multiplying from the right with a unimodular matrix (e.g. by column operations)

$$
P(s) C(s)=\left(\begin{array}{ccccccc}
\times & 0 & 0 & \cdots & 0 & \cdots & 0 \\
\times & \times & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & & \vdots & & \vdots \\
\times & \times & \cdots & \times & 0 & \cdots & 0
\end{array}\right)
$$

Proof of Hermite form: Iterative constructive proof, similar to Gauss elimination, but using "polynomial division with remainder" as basic step instead of division

Hermite Form in Maple

```
with(LinearAlgebra); with(MatrixPolynomialAlgebra);
G:= Matrix (4, 2, [s^2+3*s+2, 0,0, s^2+3*s+2,s+2,1, s, 2*s+1]);
H := HermiteForm(G,s);
latex(G);latex(H);
```

$$
\begin{aligned}
& G=\left(\begin{array}{cc}
s^{2}+3 s+2 & 0 \\
0 & s^{2}+3 s+2 \\
s+2 & 1 \\
2 & 2 s+1
\end{array}\right) \\
& H=\left(\begin{array}{cc}
1 & 1 \\
0 & s+1 \\
0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Finding common factors and computing a gcrd

Given $G(s)=N_{R}(s) D_{R}^{-1}(s)$, use Hermite to get unimodular U :

$$
\left(\begin{array}{ll}
U_{11}(s) & U_{12}(s) \\
U_{21}(s) & U_{22}(s)
\end{array}\right)\binom{D_{R}(s)}{N_{R}(s)}=\binom{R(s)}{0}
$$

With $V=U^{-1}$ we get

$$
\binom{D_{R}(s)}{N_{R}(s)}=\left(\begin{array}{ll}
V_{11}(s) & V_{12}(s) \\
V_{21}(s) & V_{22}(s)
\end{array}\right)\binom{R(s)}{0}
$$

- R is a gcrd of N_{R} and D_{R}
- V_{11} is nonsing., $\operatorname{det} V_{11}=$ const $\cdot \operatorname{det} U_{22}$
- $G(s)=V_{21}(s) V_{11}^{-1}(s)$ right coprime MFD
- $G(s)=-U_{22}(s)^{-1} U_{21}(s)$ left coprime MFD

3 min Exercise

Write down the dual result if we instead have a left MFD

$$
G(s)=D_{L}^{-1}(s) N_{L}(s)
$$

The audience is thinking

Polynomial Maple Toolbox

```
with(LinearAlgebra):
with(MatrixPolynomialAlgebra):
List of MatrixPolynomialAlgebra Package Commands
Coeff ColumnReducedForm Degree HermiteForm Lcoeff
Ldegree LeftDivision MahlerSystem MatrixGCLD MatrixGCRD
MatrixLCLM MatrixLCRM MinimalBasis PopovForm RightDivision
RowReducedForm SmithForm Tcoeff
```


Example

$$
\begin{aligned}
G(s) & =\left[\begin{array}{cc}
\frac{s}{(s+1)^{2}(s+2)^{2}} & \frac{s}{(s+2)^{2}} \\
-\frac{s}{(s+2)^{2}} & -\frac{s}{(s+2)^{2}}
\end{array}\right]= \\
& =\left(\begin{array}{cc}
s & s \\
-s(s+1)^{2} & -s
\end{array}\right)\left(\begin{array}{cc}
(s+1)^{2}(s+2)^{2} & 0 \\
0 & (s+2)^{2}
\end{array}\right)^{-1}=N_{R} D_{R}^{-1}
\end{aligned}
$$

Find common factors and compute left MFD and right MFD

$$
\begin{aligned}
P(s) & :=\binom{D_{R}(s)}{N_{R}(s)}=\left(\begin{array}{cc}
(s+1)^{2}(s+2)^{2} & 0 \\
0 & (s+2)^{2} \\
s & s \\
-s(s+1)^{2} & -s
\end{array}\right) \\
U(s)\left(\begin{array}{ll}
P(s) & I
\end{array}\right) & =\left(\binom{R(s)}{0} U(s)\right)
\end{aligned}
$$

Example - continued

```
with(MatrixPolynomialAlgebra): with(LinearAlgebra):with(linalg):
P:=Matrix([[(s+1)^2*(s+2)~2,0],[0, (s+2)^2],[s,s],[-s*(s+1)^2,-s]]);
PI:=convert(augment(P,IdentityMatrix(4,4)),Matrix):
RU:=map(factor,HermiteForm(PI,s)):
R:=submatrix(RU,1..2,1..2);
U:=submatrix(RU,1..4,3..6):
V:=map(factor,inverse(U)):
V11:=submatrix(V,1..2,1..2);V21:=submatrix(V,3..4,1..2);
U21:=submatrix(U,3..4,1..2);U22:=submatrix(U,3..4,3..4);
latex(R);latex(U21);latex(U22);latex(V11); latex(V21);
```

$$
R U=\left[\begin{array}{cccccc}
1 & 1 & 1 / 4 & 1 / 4+s / 2 & -s^{2} / 2-2 s-5 / 2 & s / 4+1 / 2 \\
0 & s+2 & 0 & -s / 4+1 / 2 & (s+1)^{2} / 4 & 1 / 4 \\
0 & 0 & s & s & 0 & (s+2)^{2} \\
0 & 0 & 0 & s^{2} & -(s+2)(s+1)^{2} & -s-2
\end{array}\right]
$$

Example - continued

Common factor

$$
R=\left[\begin{array}{cc}
1 & 1 \\
0 & s+2
\end{array}\right]
$$

Submatrices of U and V needed:

$$
\begin{aligned}
& U_{22}=\left[\begin{array}{cc}
0 & (s+2)^{2} \\
-(s+2)(s+1)^{2} & -s-2
\end{array}\right], U_{21}=\left[\begin{array}{ll}
s & s \\
0 & s^{2}
\end{array}\right] \\
& V_{21}=\left[\begin{array}{cc}
s & 0 \\
-s(s+1)^{2} & s^{2}
\end{array}\right], V_{11}=\left[\begin{array}{cc}
(s+1)^{2}(s+2)^{2} & -(s+2)(s+1)^{2} \\
0 & s+2
\end{array}\right]
\end{aligned}
$$

Example - continued

Right coprime MFD of $G(s)=V_{21}(s) V_{11}^{-1}(s)$:

$$
N_{R} D_{R}^{-1}=\left[\begin{array}{cc}
s & 0 \\
-s(s+1)^{2} & s^{2}
\end{array}\right]\left[\begin{array}{cc}
(s+1)^{2}(s+2)^{2} & -(s+2)(s+1)^{2} \\
0 & s+2
\end{array}\right]^{-1}
$$

Left coprime MFD of $G(s)=-U_{22}^{-1}(s) U_{21}(s)$:

$$
D_{L}^{-1} N_{L}=\left[\begin{array}{cc}
0 & -(s+2)^{2} \\
(s+2)(s+1)^{2} & s+2
\end{array}\right]^{-1}\left[\begin{array}{cc}
s & s \\
0 & s^{2}
\end{array}\right]
$$

Note that

$$
\begin{aligned}
& \operatorname{det} D_{R}(s)=\operatorname{det} D_{L}(s)=(s+1)^{2}(s+2)^{3} \\
& \operatorname{det} N_{R}(s)=\operatorname{det} N_{L}(s)=s^{3}
\end{aligned}
$$

A useful result

Assume $P(s)$ and $Q(s)$ have the same number of columns, n. The following are then equivalent (left version also exists)

- $P(s)$ and $Q(s)$ are right coprime
- There exists polynomial matrices $X(s)$ and $Y(s)$ so (Bezout identity)

$$
X(s) P(s)+Y(s) Q(s)=I_{n}
$$

- For every complex s

$$
\operatorname{rank}\binom{Q(s)}{P(s)}=n
$$

Proof: Follows directly from the Hermite form.

Coprime MFDs are (almost) unique

Theorem If we have two coprime right MFDs

$$
G(s)=N_{1}(s) D_{1}^{-1}(s)=N_{2}(s) D_{2}^{-1}(s)
$$

then there is a unimodular matrix $U(s)$ such that

$$
N_{1}(s)=N_{2}(s) U(s), \quad D_{1}(s)=D_{2}(s) U(s)
$$

Remark: As a consequence $\operatorname{det} D_{1}(s)=k \operatorname{det} D_{2}(s), k \neq 0$

An analogous result of course holds for left coprime MFDs

Comparing left and right MFDs

Theorem If

$$
G(s)=D_{L}^{-1}(s) N_{L}(s)=N_{R}(s) D_{R}^{-1}(s)
$$

with both MFDs coprime, then

$$
\operatorname{det} D_{L}(s)=k \operatorname{det} D_{R}(s), \quad k \neq 0
$$

The degree of $D(s)$ in any coprime MFD is called the McMillan degree of $G(s)$. This degree equals the dimension of any minimal representation of $G(s)$

To show this, and to find a state space realisation, one more property of MFDs is studied in Rugh: "column reduced" (right MFD), or "row reduced" (left MFD). We will skip the proof of these results (e.g. Rugh 17.4).

An Observation

The left MFD $(s I-A)^{-1} B$ is coprime $\Leftrightarrow\{A, B\}$ is controllable

The right MFD $C(s I-A)^{-1}$ is coprime $\Leftrightarrow\{A, C\}$ is observable

Smith Form and equivalence

By simultaneous row and column operations we can go beyond the Hermite form and obtain a diagonal form

The poles and zeros of the systems can then be seen clearly
Two polynomial matrices $A(s)$ and $B(s)$ are "equivalent" if $A(s)$ can be transformed into $B(s)$ using elementary row and column operations. We then write

$$
A(s) \sim B(s)
$$

Remark: $A(s) \sim B(s)$ if and only if there exist $P(s)$ and $Q(s)$ such that $B(s)=P(s) A(s) Q(s)$ where $P(s)$ and $Q(s)$ are products of elementary matrices, i.e. unimodular matrices

Theorem - Smith Normal Form

For any polynomial matrix $A(s)$ it holds that

$$
A(s) \sim\left[\begin{array}{cc}
D_{r}(s) & 0 \\
0 & 0
\end{array}\right]
$$

where

$$
D_{r}(s)=\operatorname{diag}\left(i_{1}(s), i_{2}(s), \ldots, i_{r}(s)\right)
$$

and where

- $i_{k}(s)$ are monic polynomials
- i_{k} divides i_{k+1} for $k=1,2, \ldots, r-1$.

Definition : $i_{k}(s), k=1,2, \ldots, r$ are called the invariant polynomials of $A(s)$.

Example - Maple

$$
\begin{aligned}
& \text { with(MatrixPolynomialAlgebra): } \\
& \text { A:=Matrix ([}[s+2,1],[s, 2 * s+1]]) \text {; } \\
& \left.\mathrm{A}:=\begin{array}{lr}
{[\mathrm{s}+2} & 1
\end{array}\right]
\end{aligned}
$$

> SmithForm(A);
$\left.\begin{array}{lcr}{[1} & 0 &] \\ {[} & &] \\ {[} & & 2\end{array}\right]$
> latex(map(factor,SmithForm(A)));

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & (s+1)^{2}
\end{array}\right]
$$

Definition: Determinantal divisors

A determinantal divisor $d_{j}(s)$ of a polynomial matrix $A(s)$ is the greatest common divisor of all the minors of order j in $A(s)$,
$j=1,2, \ldots, \min (m, n)$.
$d_{1}(s)=$ GCD of all elements
$d_{2}(s)=$ GCD of all 2×2 subdeterminants
etc
$d_{n}(s)=$ const \cdot determinant of $A(s)$
where the constant is chosen so d_{n} becomes monic.

Lemma

The determinantal divisors are invariant under elementary operations.
Proof: Let $B(s)=P(s) A(s)$ where $P(s)$ is unimodular. By the Cauchy-Binet formula for determinants

$$
\operatorname{det}(B[I, J](s))=\sum_{\# K=j} \operatorname{det}(P[I, K](s)) \operatorname{det}(A[K, J](s))
$$

where $\# I=\# J=j$. It follows that $A(s)$ and $B(s)$ have the same determinantal divisors (think).

Theorem

The Smith form is unique, and can be found from the determinantal divisors

Proof: A matrix

$$
\left[\begin{array}{cccccc}
i_{1}(s) & 0 & \cdots & 0 & \cdots & 0 \\
0 & i_{2}(s) & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & & & \vdots \\
0 & 0 & & i_{r}(s) & & 0 \\
\vdots & \vdots & & & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0
\end{array}\right]
$$

where i_{k} divides i_{k+1} for $k=1,2, \ldots, r-1$ has determinantal divisors given by

Proof continued

$$
\begin{aligned}
d_{m}(s) & =i_{1}(s) i_{2}(s) \cdots i_{m}(s), m=1,2, \ldots, r \\
d_{m}(s) & =0, m>r
\end{aligned}
$$

Hence

$$
\begin{aligned}
i_{1}(s) & =d_{1}(s) \\
i_{m}(s) & =d_{m}(s) / d_{m-1}(s), 2 \leq m \leq r
\end{aligned}
$$

Since the determinantal divisors are invariant under elementary operations, $i_{k}(s)$ are uniquely determined by the original matrix.

Example

Consider the earlier example

$$
A(s)=\left(\begin{array}{cc}
s+2 & 1 \\
s & 2 s+1
\end{array}\right)
$$

The determinantal divisors are
$d_{1}: \quad \operatorname{GCD}$ of $(s+2), 1, s,(2 s+1)$, i.e. $d_{1}=1$
$d_{2}: \operatorname{det} A(s)=(s+2)(2 s+1)-s=2(s+1)^{2}$, i.e. $d_{2}=(s+1)^{2}$
Hence the Smith form is (as already computed by Maple)

$$
A(s) \sim\left(\begin{array}{cc}
1 & 0 \\
0 & (s+1)^{2}
\end{array}\right)
$$

Theorem

Two polynomial matrices of the same order are equivalent if and only if they have the same invariant polynomials

Proof: Use elementary operations to bring both matrices to their Smith form. The result follows from the uniqueness of the Smith form.

The Smith McMillan Form

Let $d(s)$ be the least common multiple of denominators and write

$$
G(s)=\frac{1}{d(s)} N(s)
$$

Find Smith form of $N(s)=P(s) \Lambda(s) Q(s), P, Q$ unimodular
The Smith McMillan form is then

$$
G(s)=P(s)\left(\begin{array}{cc}
\operatorname{diag}\left(\frac{\epsilon_{i}(s)}{\psi_{i}(s)}\right) & 0 \\
0 & 0
\end{array}\right) Q(s)
$$

where ϵ_{i}, ψ_{i} without common factors

$$
\frac{\epsilon_{i}(s)}{\psi_{i}(s)}=\frac{\lambda_{i}(s)}{d(s)}, \quad \psi_{i+1}(s)\left|\psi_{i}(s), \quad \epsilon_{i}(s)\right| \epsilon_{i+1}(s), \quad \psi_{1}(s)=d(s)
$$

Poles and Zeros

Using the Smith McMillan form we define

- The roots of $\epsilon_{i}(s)$ are the (transmission) zeros
- The roots of $\psi_{i}(s)$ are the poles
(counted with multiplicities)

Example

$$
\left(\begin{array}{cc}
\frac{1}{s+1} & \frac{1}{(s+1)(s+2)} \\
\frac{s}{(s+1)(s+2)} & \frac{2 s+1}{(s+1)(s+2)}
\end{array}\right)=\frac{1}{(s+1)(s+2)}\left(\begin{array}{cc}
s+2 & 1 \\
s & 2 s+1
\end{array}\right)
$$

The Smith McMillan form is

$$
\frac{1}{(s+1)(s+2)}\left(\begin{array}{cc}
1 & 0 \\
0 & (s+1)^{2}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{(s+1)(s+2)} & 0 \\
0 & \frac{s+1}{s+2}
\end{array}\right)
$$

with

$$
\epsilon_{1}=1, \epsilon_{2}=s+1 ; \quad \psi_{1}=(s+1)(s+2), \psi_{2}=s+2
$$

zeros: -1
poles: $-1,-2,-2$

Another Example

Consider a system of the form

$$
G(s)=\left(\begin{array}{cc}
\frac{b_{1}(s)}{a_{1}(s)} & \frac{b_{2}(s)}{a_{2}(s)} \\
0 & \frac{b_{3}(s)}{a_{3}(s)}
\end{array}\right)
$$

where $b_{1}, b_{2}, b_{3}, a_{1}, a_{2}, a_{3}$ have no common factors.

$$
G(s)=\frac{1}{a_{1}(s) a_{2}(s) a_{3}(s)}\left(\begin{array}{cc}
b_{1}(s) a_{2}(s) a_{3}(s) & b_{2}(s) a_{1}(s) a_{3}(s) \\
0 & b_{3}(s) a_{1}(s) a_{2}(s)
\end{array}\right)
$$

The invariant factors are

$$
\begin{aligned}
& i_{1}(s)=1 \\
& i_{2}(s)=b_{1}(s) b_{3}(s) a_{1}(s) a_{2}^{2}(s) a_{3}(s)
\end{aligned}
$$

Example

The Smith-McMillan form of $G(s)$ is hence

$$
\begin{gathered}
\frac{1}{a_{1}(s) a_{2}(s) a_{3}(s)}\left(\begin{array}{cc}
1 & 0 \\
0 & b_{1}(s) b_{3}(s) a_{1}(s) a_{2}^{2}(s) a_{3}(s)
\end{array}\right)= \\
=\left(\begin{array}{cc}
\frac{1}{a_{1}(s) a_{2}(s) a_{3}(s)} & 0 \\
0 & b_{1}(s) b_{3}(s) a_{2}(s)
\end{array}\right)
\end{gathered}
$$

Poles: Roots of $a_{1}(s) a_{2}(s) a_{3}(s)$
Zeros: Roots of $b_{1}(s) b_{3}(s) a_{2}(s)$
Roots of $a_{2}(s)$ are both poles and zeros of the system!

Invariants in transfer functions

Let $G(s)$ have different left or right coprime MFDs. Then it can be seen that

- All numerator matrices $N(s)$ have the same Smith form
- All denominator matrices $D(s)$ have the same Smith form (except for extra 1s on the diagonal)
- The invariant polynomials of the numerators matrices are the $\epsilon_{i}(s)$ of the SmithMcMillan form of G
- The invariant polynomials of the denominator matrices are the $\psi_{i}(s)$ of the SmithMcMillan form of G
- The zeros are the s-values for which the rank of $N(s)$ drops below its normal rank
- The poles are the roots of $\operatorname{det} D(s)=0$

