Lecture 6

- Least squares problems
- Adjoint operators

Review: Least Squares Solution to Linear Equations (I)

Consider a system of linear equations

$$
A x=b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}
$$

with $m \geq n$ and $\operatorname{rank}(A)=n$ (Tall A-more rows than columns, or more equations than unknowns).

If $b \notin \operatorname{range}(A)$ then the linear system is inconsistent, i.e., no solution exists.

Find x that minimizes $\|A x-b\|^{2}$-least squares solution

Review: Least Squares Solution to Linear Equations (I)

Least squares solution to the inconsistent linear equation $A x=b$ is given by the solution to $A^{\top} A x=A^{\top} b$; i.e., $x_{\mathrm{ls}}=\left(A^{\top} A\right)^{-1} A^{\top} b$.

Geometric interpretation:

Orthogonal projection of b on the subspace range (A).

Review: Least Norm Solution (II)

Consider a system of linear equations

$$
A x=b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}
$$

with $m \leq n$ and $\operatorname{rank}(A)=m$ (Fat A-more columns than rows, or more variables than equations).

- There exist an infinite number of solutions to this linear equation-(Underdetermined)
- There is only one solution that is closest to the origin; i.e., a solution to $A x=b$ with least norm $\|x\|$.

Review: Least Norm Solution (II)

Least norm solution to the underdetermined linear equation $A x=b$ is given $x_{\mathrm{ln}}=A^{\top}\left(A A^{\top}\right)^{-1} b$.

Geometric interpretation:

- orthogonality condition: $x_{\mathrm{ln}} \perp \operatorname{Null}(A)$
- projection interpretation: x_{ln} is projection of 0 on solution set $\{x \mid A x=b\}$.

Least Squares Problems I

Given L and v, minimize $|L u-v|$ with respect to u.
"Tall L, more equations than variables"

Note the orthogonality in the picture!

Least Squares Problems II

Given L and v, minimize $|u|$ under the constraint $L u=v$.
"Fat L, more variables than equations"

Note the orthogonality in the picture!

Vector Space and Inner Products

A vector space V is a generalisation of R^{n} and is defined by 'vectors' and 'scalars' satisfying some standard rules, e.g

- addition of vectors, $v_{1}+v_{2}=v_{2}+v_{1}$,

$$
v_{1}+\left(v_{2}+v_{3}\right)=\left(v_{1}+v_{2}\right)+v_{3}
$$

- multiplication with scalars $\left(\lambda_{1} \lambda_{2}\right) v=\lambda_{1}\left(\lambda_{2} v\right)$
(there are more rules). Scalar field could be e.g. R och C
A scalar product $<V, V>\rightarrow R$ is a generalisation of $y^{*} x$ satisfying natural linearity rules and $\langle v, v\rangle \in(0, \infty)$ forall nonzero v.

Note that for complex scalars

$$
<\lambda_{1} v_{1}, \lambda_{2} v_{2}>=\bar{\lambda}_{1} \lambda_{2}<v_{1}, v_{2}>
$$

Examples and Orthogonality

Finite-dimensional vector space:

$$
\begin{aligned}
& R^{n}, \quad<y, x>=y^{*} x \text { or }<y, x>=y^{*} Q x, Q>0 \\
& R^{n \times m}, \quad<Y, X>=\operatorname{tr}\left(Y^{*} X\right)
\end{aligned}
$$

We will say that x and y are orthogonal if

Vectors orthogonal to a subspace S will be denoted by S
(Orthogonal complement)

Examples and Orthogonality

Finite-dimensional vector space:
$R^{n}, \quad<y, x>=y^{*} x$ or $<y, x>=y^{*} Q x, Q>0$
$R^{n \times m}, \quad<Y, X>=\operatorname{tr}\left(Y^{*} X\right)$
Infinite-dimensional vector space:
$l_{2}, \quad<y, x>=\sum_{k=1}^{\infty} y_{k}^{*} x_{k}$
$L_{2}[a, b], \quad<y(t), x(t)>=\int_{a}^{b} y^{*}(t) x(t) d t$
$L_{2, w}[a, b], \quad<y(t), x(t)>=\int_{a}^{b} y^{*}(t) x(t) w(t) d t, w>0$
We will say that x and y are orthogonal if

Examples and Orthogonality

Finite-dimensional vector space:
$R^{n}, \quad<y, x>=y^{*} x$ or $<y, x>=y^{*} Q x, Q>0$
$R^{n \times m}, \quad<Y, X>=\operatorname{tr}\left(Y^{*} X\right)$
Infinite-dimensional vector space:
$l_{2}, \quad<y, x>=\sum_{k=1}^{\infty} y_{k}^{*} x_{k}$
$L_{2}[a, b], \quad<y(t), x(t)>=\int_{a}^{b} y^{*}(t) x(t) d t$
$L_{2, w}[a, b], \quad<y(t), x(t)>=\int_{a}^{b} y^{*}(t) x(t) w(t) d t, w>0$
We will say that x and y are orthogonal if

$$
<x, y>=0
$$

Vectors orthogonal to a subspace S will be denoted by S^{\perp} (Orthogonal complement)

Example: Matrix Adjoint

Let $L: X \rightarrow Y$ be a bounded linear operator. The adjoint operator $L^{*}: Y \rightarrow X$ is defined by the identity

$$
<y, L x>=<L^{*} y, x>
$$

for $x \in X, y \in Y$.

From the equalities

$$
<y, L x>=y^{*} L x=\left(L^{*} y\right)^{*} x=<L^{*} y, x>
$$

we see that the adjoint of a matrix is given by its conjugate transpose.

Example: Adjoint Transition Matrix

If $L: \mathbf{R}^{n} \rightarrow \mathbf{L}_{2}^{m}[0, \infty)$ is defined by

$$
\left(L x_{0}\right)(t)=C(t) \Phi(t, 0) x_{0}, \quad x_{0} \in \mathbf{R}^{n}
$$

then the adjoint $L^{*}: \mathbf{L}_{2}^{m}[0, \infty) \rightarrow \mathbf{R}^{n}$ is given by

$$
L^{*} y=\int_{0}^{\infty} \Phi(t, 0)^{T} C(t)^{T} y(t) d t
$$

Proof:

$$
\begin{aligned}
<y, L x_{0}> & =\int_{0}^{\infty} y(t)^{T} C(t) \Phi(t, 0) x_{0} d t \\
& =\left(\int_{0}^{\infty} \Phi(t, 0)^{T} C(t)^{T} y(t) d t\right)^{T} x_{0} \\
& =<L^{*} y, x_{0}>
\end{aligned}
$$

Exercise

Define instead $L: \mathbf{L}_{2}^{m}[0, \infty) \rightarrow \mathbf{L}_{2}^{m}[0, \infty)$ by

$$
(L u)(t)=\int_{0}^{t} \Phi(t, s) u(s) d s
$$

What is the adjoint L^{*} ?

Hint: $\left\langle y, L u>=<L^{*} y, u>\right.$

The audience is thinking

Adjoint Equation

If $\Phi\left(t, t_{0}\right)$ is the transition matrix for

$$
\dot{x}(t)=A(t) x(t)
$$

then $\Phi\left(t_{0}, t\right)^{T}$ is the transition matrix for

$$
\dot{z}(t)=-A(t)^{T} z(t)
$$

The relation can be written

$$
\left[\Phi_{A}(s, t)\right]^{*}=\Phi_{-A^{T}}(t, s)
$$

Proof: Exercise

Least Squares Problem I

Minimize $|L u-v|$ with respect to u.

Solution: Any \hat{u} satisfying the Orthogonality Property

$$
\begin{equation*}
0=<L x, L \hat{u}-v>\text { for all } x \tag{OP1}
\end{equation*}
$$

Or equivalently

$$
L^{*} L \hat{u}=L^{*} v
$$

Application: Fewer control signals than objectives

Proof - Completion of Squares

Assume first \hat{u} satisfies OP1. Then with $x=u-\hat{u}$ we get

$$
\begin{aligned}
|L u-v|^{2} & =<L \hat{u}-v+L x, L \hat{u}-v+L x> \\
& =<L \hat{u}-v, L \hat{u}-v>+<L x, L x> \\
& =|L \hat{u}-v|^{2}+|L x|^{2} \\
& \geq|L \hat{u}-v|^{2}
\end{aligned}
$$

Therefore \hat{u} is optimal (might be non-unique).
Assume instead that \hat{u} is optimal. Since for any x

$$
\begin{aligned}
& |L(\hat{u}+\epsilon x)-v|^{2}= \\
& \quad<L \hat{u}-v, L \hat{u}-v>+2 \epsilon<L x, L \hat{u}-v>+\epsilon^{2}<L x, L x>
\end{aligned}
$$

should be \min for $\epsilon=0$ we see $<L x, L \hat{u}-v>=0$, i.e OP1.

Example: Estimating Initial State

Define $L: \mathbf{R}^{n} \rightarrow \mathbf{L}_{2}^{m}\left[t_{0}, t_{1}\right]$ by

$$
\left(L x_{0}\right)(t)=C(t) \Phi\left(t_{1}, t_{0}\right) x_{0}, \quad x_{0} \in \mathbf{R}^{n}
$$

Problem:

Given an output measurement $y(t)$ for $t \in\left[t_{0}, t_{1}\right]$, find the value of x_{0} that minimizes $\left|L x_{0}-y\right|$.

Solution:

We calculated $L^{*} y=\int_{t_{0}}^{t_{1}} \Phi\left(t, t_{0}\right)^{T} C(t)^{T} y(t) d t$ above.
Use of OP1 formula gives

$$
\begin{aligned}
x_{0} & =\left(L^{*} L\right)^{-1} L^{*} y \\
& =\left(\int_{t_{0}}^{t_{1}} \Phi\left(t, t_{0}\right)^{T} C^{T} C \Phi\left(t, t_{0}\right) d t\right)^{-1} \int_{t_{0}}^{t_{1}} \Phi\left(t, t_{0}\right)^{T} C^{T} y(t) d t
\end{aligned}
$$

Least Squares Problem II

Minimize $|u|$ under the constraint $L u=v$.

Solution: Any \hat{u} satisfying $L \hat{u}=v$ and the Orthogonality Property

$$
\begin{equation*}
0=<\hat{u}, \hat{u}-u>\text { for all } u \text { with } L u=v \tag{OP2}
\end{equation*}
$$

Or, if $L L^{*}$ invertible, equivalently

$$
\hat{u}=L^{*}\left(L L^{*}\right)^{-1} v \quad \text { (if } L L^{*} \text { invertible) }
$$

Application: Reach certain state with minimal cost

Proof - Completion of Squares

Assume a candidate \hat{u} satisfies OP2. Then

$$
<u, u>=<\hat{u}, \hat{u}>+<u-\hat{u}, u-\hat{u}>\geq<\hat{u}, \hat{u}>
$$

for all u satisfying $L u=v$. Hence \hat{u} is optimal (and unique).

Necessity of OP2: As above, study $\|\hat{u}+\epsilon(u-\hat{u})\|^{2}$ near $\epsilon=0$
If $L L^{*}$ invertible then $\hat{u}=L^{*}\left(L L^{*}\right)^{-1} v$ satisifies both $L \hat{u}=v$ (obvious) and OP2:

$$
\begin{aligned}
<\hat{u}, \hat{u}-u> & =<L^{*}\left(L L^{*}\right)^{-1} v, L^{*}\left(L L^{*}\right)^{-1} v-u> \\
& =<\left(L L^{*}\right)^{-1} v, v-L u>=0
\end{aligned}
$$

Remarks - Technical Details

In the first problem, the solution \hat{u} might be nonunique if $L^{*} L$ is not invertible. For example when $L=0$

In the second problem, if $L L^{*}$ is not invertible, the equation $L u=v$ might be unsolvable, the solution can also be non-unique. But if $L L^{*} x=v$ is solvable then $\hat{u}=L^{*} x$ is ontimal

Remarks - Technical Details

In the first problem, the solution \hat{u} might be nonunique if $L^{*} L$ is not invertible. For example when $L=0$

In the second problem, if $L L^{*}$ is not invertible, the equation $L u=v$ might be unsolvable, the solution can also be non-unique. But if $L L^{*} x=v$ is solvable, then $\hat{u}=L^{*} x$ is optimal

Example

Find $u(t)=\binom{u_{1}(t)}{u_{2}(t)}$ with min 2-norm so $\int_{0}^{1} u_{1}(t)+t u_{2}(t) d t=4$

The audience is thinking

Hints:
What is a suitable L ?
What is L^{*} ?
$\hat{u}=L^{*}\left(L L^{*}\right)^{-1} 4=$?

Properties of the Adjoint

Let L be a bounded linear operator between two real Hilbert spaces.
Then (where the bar denotes 'closure')

$$
\begin{align*}
L^{* *} & =L \tag{1}\\
{[\mathcal{R}(L)]^{\perp} } & =\mathcal{N}\left(L^{*}\right) \tag{2}\\
{\left[\mathcal{R}\left(L^{*}\right)\right]^{\perp} } & =\mathcal{N}(L) \tag{3}\\
\overline{\mathcal{R}(L)} & =\left[\mathcal{N}\left(L^{*}\right)\right]^{\perp} \tag{4}\\
\overline{\mathcal{R}\left(L^{*}\right)} & =[\mathcal{N}(L)]^{\perp} \tag{5}\\
\mathcal{N}\left(L^{*}\right) & =\mathcal{N}\left(L L^{*}\right) \tag{6}\\
\mathcal{N}(L) & =\mathcal{N}\left(L^{*} L\right) \tag{7}
\end{align*}
$$

Properties of the Adjoint

Proof of (2):
$y \in \mathcal{R}(L)^{\perp} \Leftrightarrow<y, L x>=0, \forall x \Leftrightarrow<L^{*} y, x>=0, \forall x \Leftrightarrow y \in N\left(L^{*}\right)$

Proof of (7):
$L x=0 \Rightarrow L^{*} L x=0 \Rightarrow 0=<x, L^{*} L x>=<L x, L x>\Rightarrow L x=0$

Example: Shift Operator on l_{2}

$$
\begin{aligned}
l_{2} & =\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right): \sum_{i=1}^{\infty} x_{i}^{2}<\infty\right\} \\
x & =\left(x_{1}, x_{2}, x_{3}, \ldots\right) \\
y & =\left(y_{1}, y_{2}, y_{3}, \ldots\right) \\
S x & =\left(0, x_{1}, x_{2}, \ldots\right) \\
S^{*} y & =\left(y_{2}, y_{3}, \ldots\right) \\
<y, S x> & =\sum_{i=1}^{\infty} y_{i+1} x_{i}=<S^{*} y, x> \\
\mathcal{R}(S) & =\{(0, *, *, *, \ldots)\} \\
\mathcal{N}\left(S^{*}\right) & =\{(*, 0,0,0, \ldots)\}
\end{aligned}
$$

Operator Interpretation of Gramian

Recall that the matrix function

$$
W\left(t_{0}, t_{f}\right)=\int_{t_{0}}^{t_{f}} \Phi\left(t_{0}, t\right) B(t) B(t)^{T} \Phi\left(t_{0}, t\right)^{T} d t
$$

is called controllability Gramian.

Define $L: \mathbf{L}_{2}^{m}\left[t_{0}, t_{f}\right] \rightarrow \mathbf{R}^{n}$ by $L u=\int_{t_{0}}^{t_{f}} \Phi\left(t_{0}, \tau\right) B(\tau) u(\tau) d \tau$. Then

$$
\begin{aligned}
x\left(t_{f}\right) & =\Phi\left(t_{f}, t_{0}\right)\left[x\left(t_{0}\right)+L u\right] \\
\left(L^{*} x\right)(t) & =B(t)^{T} \Phi\left(t_{0}, t\right)^{T} x \\
L L^{*} & =\int_{t_{0}}^{t_{f}} \Phi\left(t_{0}, \tau\right) B(\tau) B(\tau)^{T} \Phi\left(t_{0}, \tau\right)^{T} d \tau=W\left(t_{0}, t_{f}\right)
\end{aligned}
$$

Th. Rugh 9.2-Controllability Revisited

The system $\dot{x}(t)=A(t) x(t)+B(t) u(t)$ is controllable on $\left(t_{0}, t_{f}\right)$ if and only if $W\left(t_{0}, t_{f}\right)>0$. The minimal cost $\int_{t_{0}}^{t_{f}}|u|^{2} d t$ to reach 0 from x_{0} is then $x_{0}^{T} W\left(t_{0}, t_{f}\right)^{-1} x_{0}$.

Proof.

$$
\begin{aligned}
& \text { Reachability on }\left(t_{0}, t_{f}\right) \Leftrightarrow \quad \forall x_{0}: \exists u: x\left(t_{f}\right)=0 \\
& \Leftrightarrow \quad \forall x_{0}: \exists u: x_{0}+L u=0 \\
& \Leftrightarrow \quad \mathcal{R}(L)=\mathbf{R}^{n} \\
& \Leftrightarrow \quad \mathcal{N}\left(L^{*}\right)=\{0\} \\
& \Leftrightarrow \quad \mathcal{N}\left(L L^{*}\right)=\{0\} \\
& \Leftrightarrow \quad \mathcal{N}\left[W\left(t_{0}, t_{f}\right)\right]=\{0\} \\
& \Leftrightarrow \quad W\left(t_{0}, t_{f}\right)>0
\end{aligned}
$$

Controllability Cont'd

Minimize $|u|$ under the constraint $x_{0}+L u=0$.

$$
\begin{aligned}
\hat{u} & =-L^{*}\left(L L^{*}\right)^{-1} x_{0} \quad \text { (if } L L^{*} \text { invertible) } \\
|\hat{u}|^{2} & =x_{0}^{T}\left(L L^{*}\right)^{-1} x_{0}=x_{0}^{T} W\left(t_{0}, t_{f}\right)^{-1} x_{0}
\end{aligned}
$$

Observability Gramian

For $x_{0} \in \mathbf{R}^{n}, y \in \mathbf{L}_{2}^{m}\left[t_{0}, t_{1}\right]$, introduce

$$
\begin{aligned}
\left(M x_{0}\right)(t) & =C(t) \Phi\left(t, t_{0}\right) x_{0}, \quad t \in\left[t_{0}, t_{1}\right] \\
M^{*} y & =\int_{t_{0}}^{t_{1}} \Phi\left(t, t_{0}\right)^{T} C(t)^{T} y(t) d t
\end{aligned}
$$

Then the unobservable initial states can be computed as

$$
\mathcal{N}(M)=\mathcal{N}\left(M^{*} M\right)=\mathcal{N}\left(\int_{t_{0}}^{t_{1}} \Phi\left(t, t_{0}\right)^{T} C(t)^{T} C(t) \Phi\left(t, t_{0}\right) d t\right)
$$

Note that the matrix

$$
\int_{t_{0}}^{t_{1}} \Phi\left(t, t_{0}\right)^{T} C(t)^{T} C(t) \Phi\left(t, t_{0}\right) d t
$$

is the observability Gramian of the system.

Example - Polynomial Interpolation

Given m points $\left(x_{i}, y_{i}\right)$ find a degree n polynomial

$$
p(x)=p_{0}+p_{1} x+\ldots p_{n} x^{n}
$$

minimizing the interpolation error

$$
J=\sum_{i=1}^{m}\left|y_{i}-p\left(x_{i}\right)\right|^{2}
$$

Note that

$$
\left(\begin{array}{c}
p\left(x_{1}\right) \\
p\left(x_{2}\right) \\
\vdots \\
p\left(x_{m}\right)
\end{array}\right)=\left[\begin{array}{cccc}
1 & x_{1} & x_{1}^{2} & \ldots x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \ldots x_{2}^{n} \\
\vdots & & & \\
1 & x_{m} & x_{m}^{2} & \ldots x_{m}^{n}
\end{array}\right]\left(\begin{array}{c}
p_{0} \\
p_{1} \\
\vdots \\
p_{n}
\end{array}\right):=L p
$$

Example - Polynomial Interpolation

The problem is hence of the form: Find p that minimizes

$$
|y-L p|^{2}
$$

The solution is given by (OP1)

$$
\begin{aligned}
\hat{p} & =\left(L^{*} L\right)^{-1} L^{*} y \\
p(t) & =\left(\begin{array}{llll}
1 & t & \ldots & t^{n}
\end{array}\right) \hat{p}
\end{aligned}
$$

Example - Function Approximation

Given a set of basis functions $\Psi_{i}(x)$ and a function $v(x)$ solve the approximation problem

$$
\min \int_{a}^{b}\left|v(x)-\sum_{i=1}^{n} u_{i} \Psi_{i}(x)\right|^{2} d x
$$

Solution $\left(L^{*} L\right) u=L^{*} v$ gives (check)

$$
\left(\begin{array}{ccc}
<\Psi_{1}, \Psi_{1}> & \ldots & <\Psi_{1}, \Psi_{n}> \\
\vdots & & \\
<\Psi_{n}, \Psi_{1}> & \ldots & <\Psi_{n}, \Psi_{n}>
\end{array}\right) u=\left(\begin{array}{c}
<\Psi_{1}, v> \\
\vdots \\
<\Psi_{n}, v>
\end{array}\right)
$$

Example - Function Approximation

Find a 2nd order polynomial approximating e^{t} for $0 \leq t \leq 1$

$$
\min \int_{0}^{1}\left|e^{t}-u_{0}-u_{1} t-u_{2} t^{2}\right|^{2} d t
$$

Calculation of $<t^{k}, t^{m}>=1 /(k+m+1)$ and $<t^{k}, e^{t}>$ gives

$$
\left[\begin{array}{l}
u_{0} \\
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 / 2 & 1 / 3 \\
1 / 2 & 1 / 3 & 1 / 4 \\
1 / 3 & 1 / 4 & 1 / 5
\end{array}\right]^{-1}\left[\begin{array}{c}
e-1 \\
1 \\
e-2
\end{array}\right]
$$

Giving the approximation

$$
u(t) \approx 1.013+0.851 t+0.839 t^{2}
$$

Example - Function Approximation

Note that the L_{2} approximation (red)

$$
e^{t} \approx 1.013+0.851 t+0.839 t^{2}
$$

is significantly better than the Taylor approximation (black)

$$
e^{t} \approx 1+t+0.5 t^{2}
$$

