Linear Systems, 2019 - Lecture 4

- Realization from Weighting Pattern
- Minimal Realizations
- Realization from Transfer Function
- Realization from Markov Parameters
- Discrete Time

Rugh Ch 10, 11 (only pp194-199, skip proof of 11.7), (26)

Example: Shift Register Synthesis

$$
\begin{aligned}
x & =\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right]^{T} \\
x(k+1) & =\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] x(k)+\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] u(k) \\
y(k) & =\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right] x(k)
\end{aligned}
$$

Given a sequence $y(0), y(1), \ldots, y(N)$, what is the shortest shift register that can generate this output for the input $u \equiv 0$?

Definition: Realization

The state equation of dimension n

$$
\begin{aligned}
\dot{x}(t) & =A(t) x(t)+B(t) u(t), \quad x\left(t_{0}\right)=0 \\
y(t) & =C(t) x(t)
\end{aligned}
$$

is called a realization of the continuous weighting pattern $G(t, \sigma)$ if

$$
G(t, \sigma)=C(t) \Phi(t, \sigma) B(\sigma) \quad \forall t, \sigma
$$

It is called minimal if no realization of smaller dimension exists.

Notice the distinction between the weighting pattern and the impulse response. The latter is zero for $t<\sigma$.

Theorem 1: Realizability

The weighting pattern $G(t, \sigma)$ has a realization of dimension n if and only if there exist matrix functions $H(t) \in \mathbf{R}^{p \times n}, F(t) \in \mathbf{R}^{n \times m}$ such that

$$
G(t, \sigma)=H(t) F(\sigma) \quad \forall t, \sigma
$$

Proof

If $G(t, \sigma)=H(t) F(\sigma)$, then

$$
\begin{aligned}
\dot{x}(t) & =F(t) u(t) \\
y(t) & =H(t) x(t)
\end{aligned}
$$

is a realization.
Conversely, if

$$
G(t, \sigma)=C(t) \Phi(t, \sigma) B(\sigma)
$$

then $G(t, \sigma)=H(t) F(\sigma)$ for

$$
\begin{aligned}
H(t) & =C(t) \Phi(t, 0) \\
F(\sigma) & =\Phi(0, \sigma) B(\sigma)
\end{aligned}
$$

This does not work in discrete time. Why?

Warning

The realizations $\{0, F(t), H(t)\}$ are seldom "nice".
Consider $G(t, \sigma)=e^{-(t-\sigma)}$ with

$$
\left\{\begin{array}{l}
\dot{x}(t)=e^{t} u(t) \quad \text { (unstable) } \\
y(t)=e^{-t} x(t)
\end{array}\right.
$$

and compare with

$$
\left\{\begin{array}{l}
\dot{x}(t)=-x(t)+u(t) \quad \text { (stable) } \\
y(t)=x(t)
\end{array}\right.
$$

Theorem 2: Minimality

A linear realization of $G(t, \sigma)$ is minimal if and only if for some $t_{0}<t_{f}$, it is both controllable and observable on $\left(t_{0}, t_{f}\right)$.

Proof Omitted (see Rugh pp 162-164 if interested)

Remark

There may still exist realizations of the impulse-responses, i.e. for $t \geq \sigma$, of lower dimension. See Exercise 10.7.

Theorem 3: Periodic Realization

A periodic linear realization of $G(t, \sigma)$ exists if and only if it is realizable and $\exists T>0$:

$$
G(t+T, \sigma+T)=G(t, \sigma) \quad \forall t, \sigma
$$

If so, then there also exists a minimal realization that is periodic.
The proof is omitted.

Theorem 4: LTI Realization

A linear time-invariant realization of $G(t, \sigma)$ exists if and only if G is realizable, continuously differentiable and

$$
G(t, \sigma)=G(t-\sigma, 0)
$$

Proof of Theorem 4

"Only if" is immediate. To prove "if" let $\{0, B(t), C(t)\}$ be a minimal realization. We want to find an LTI realisation. Introduce

$$
A=-\int_{t_{0}}^{t_{f}} B^{\prime}(\sigma) B(\sigma)^{T} d \sigma W\left(t_{0}, t_{f}\right)^{-1}
$$

With $C(t) B(\sigma)=G(t-\sigma, 0)$ it follows that

$$
\begin{aligned}
0 & =\left[\frac{\partial}{\partial t} G(t-\sigma, 0)+\frac{\partial}{\partial \sigma} G(t-\sigma, 0)\right] B(\sigma)^{T} \\
& =C^{\prime}(t) B(\sigma) B(\sigma)^{T}+C(t) B^{\prime}(\sigma) B(\sigma)^{T} \\
0 & =\int_{t_{0}}^{t_{f}}\left[C^{\prime}(t) B(\sigma) B(\sigma)^{T}+C(t) B^{\prime}(\sigma) B(\sigma)^{T}\right] d \sigma \\
0 & =C^{\prime}(t)+C(t) \int_{t_{0}}^{t_{f}} B^{\prime}(\sigma) B(\sigma)^{T} d \sigma W\left(t_{0}, t_{f}\right)^{-1} \\
0 & =C^{\prime}(t)-C(t) A, \quad C(t)=C(0) e^{A t}
\end{aligned}
$$

Proof of Theorem 4, cont'd

$$
\begin{aligned}
G(t, \sigma) & =C(t) B(\sigma)=C(t-\sigma) B(0) \\
& =C(0) e^{A(t-\sigma)} B(0)
\end{aligned}
$$

A time-invariant realization is therefore

$$
\dot{x}=A x+B(0) u, \quad y=C(0) x
$$

Example

The weighting pattern

$$
G(t, \sigma)=e^{-(t-\sigma)^{2}}
$$

satisfies $G(t, \sigma)=G(t-\sigma, 0)$, but one can prove it is not factorizable as $F(t) H(\sigma)$, so no realization exists. In fact we have:

Remark

The weighting pattern $G(t, \sigma)$ is realizable as a time-invariant (finite-dimensional) system if and only if it can be written as

$$
G(t, \sigma)=\sum_{k=1}^{n} \sum_{j=0}^{d_{k}-1} g_{k j} \cdot(t-\sigma)^{j} e^{\lambda_{k}(t-\sigma)}
$$

Exercise

Write the time invariant impulse response

$$
G(t, \sigma)=(t-\sigma) e^{-(t-\sigma)}
$$

as

$$
G(t, \sigma)=H(t) F(\sigma)
$$

Th. 5 Transfer Function Realizability

A transfer matrix $G(s)$ admits a linear time-invariant realization

$$
G(s)=C(s I-A)^{-1} B
$$

if and only if each entry of $G(s)$ is a strictly proper rational function.

Proof of Theorem 5

"Only if" is immediate.
To prove "if", choose $d(s)=s^{r}+d_{r-1} s^{r-1}+\cdots+d_{0}$ and write

$$
d(s) G(s)=N_{r-1} s^{r-1}+\cdots+N_{0}
$$

Let

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
0 & I_{m} & 0 \\
0 & & I_{m} \\
-d_{0} I_{m} & -d_{1} I_{m} & -d_{r-1} I_{m}
\end{array}\right] \\
B & =\left[\begin{array}{llll}
0 & 0 & 0 & I_{m}
\end{array}\right]^{T} \\
C & =\left[\begin{array}{lll}
N_{0} & N_{1} & \ldots \\
N_{r-1}
\end{array}\right] \\
Z(s) & =(s I-A)^{-1} B
\end{aligned}
$$

Proof of Theorem 5

It is then easy to verify that

$$
Z(s)=\frac{1}{d(s)}\left[\begin{array}{c}
I_{m} \\
s I_{m} \\
\vdots \\
s^{r-1} I_{m}
\end{array}\right]
$$

The equality $C(s I-A)^{-1} B=G(s)$ follows by left multiplication with C. Note: This realisation might not be minimal.

When $G(s)$ has distinct poles there is a more natural realization on diagonal form (which is minimal):

Gilbert-Realization

Introduce the partial fraction expansion

$$
G(s)=\sum_{i=1}^{r} G_{i} \frac{1}{s-\lambda_{i}}
$$

and the rank-factorizations

$$
G_{i}=C_{i} B_{i}, \quad C_{i} \text { is } p \times \rho_{i}, \quad B_{i} \text { is } \rho_{i} \times m
$$

where $\operatorname{rank} G_{i}=\rho_{i}$. Now use

$$
\left.\begin{array}{rl}
A & =\operatorname{diag}\left\{\lambda_{1} I_{\rho_{1}}, \ldots, \lambda_{r} I_{\rho_{r}}\right\} \\
B & =\left[\begin{array}{lll}
B_{1}^{T} & \ldots & B_{r}^{T}
\end{array}\right]^{T} \\
C & =\left[C_{1}, \ldots, C_{r}\right.
\end{array}\right]
$$

That the realisation is minimal follows from the PBH-test.

Example

$$
G(s)=\left[\begin{array}{cc}
\frac{1}{s+1} & \frac{2}{s+1} \\
\frac{-1}{(s+1)(s+2)} & \frac{1}{s+2}
\end{array}\right]=\frac{1}{s+1}\left[\begin{array}{cc}
1 & 2 \\
-1 & 0
\end{array}\right]+\frac{1}{s+2}\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]
$$

with

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -2
\end{array}\right] \\
& B=\left[\begin{array}{cc}
1 & 2 \\
-1 & 0 \\
1 & 1
\end{array}\right] \\
& C=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Theorem 6

$\{A, B, C\}$ is a minimal realisation of $G(s)$ if and only if it is controllable and observable.

Proof of Theorem 6

If $\{A, B, C\}$ is not a minimal realisation then there exists $\{F, G, H\}$ of dimension $n_{z}<n$ such that

$$
g(t)=C e^{A t} B=H e^{F t} G \quad \forall t
$$

This gives $C A^{k} B=g^{(k)}(0)=H F^{k} G \quad \forall k$, i.e.

$$
\underbrace{\left[\begin{array}{c}
C \\
\vdots \\
C A^{n-1}
\end{array}\right]}_{O_{a}} \underbrace{\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]}_{C_{a}}=\underbrace{\left[\begin{array}{c}
H \\
\vdots \\
H F^{n-1}
\end{array}\right]}_{O_{f}} \underbrace{\left[\begin{array}{lll}
G & \cdots & F^{n-1} G
\end{array}\right]}_{C_{f}}
$$

But O_{f} and C_{f} have rank less than or equal to n_{z}, so that holds also for either O_{a} or C_{a}. Therefore $\{A, B, C\}$ cannot be both controllable and observable.

Proof of Theorem 6, cont'd

Conversely, if $\{A, B, C\}$ is not controllable (similar if not observable) it can be transformed to

$$
\begin{aligned}
& \left\{\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right],\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]\right\} \\
& C e^{A t} B=C_{1} e^{A_{11} t} B_{1}
\end{aligned}
$$

so $\left\{A_{11}, B_{1}, C_{1}\right\}$ is a realization of lower dimension.

Theorem 7

Two minimal time-invariant realizations of $G(s)$ are related by a coordinate transformation $z=P x$.

The transformation is unique.

Proof of Theorem 7

Let the two minimal realizations be

$$
g(t)=C e^{A t} B=H e^{F t} G \quad \forall t
$$

With the notation from the proof of Theorem 6 let $P=C_{a} C_{f}^{T}\left(C_{f} C_{f}^{T}\right)^{-1}$.
First prove that $P^{-1}=\left(O_{f}^{T} O_{f}\right)^{-1} O_{f}^{T} O_{a}$. The existence of the inverses are guaranteed by controllability and observability.
Then verify that $P^{-1} B=G, C P=H$ and $P^{-1} A P=F$.

For any other such transformation \hat{P} it follows from $O_{a} \hat{P}=O_{f}=O_{a} P$ and observability that $\hat{P}=P$.

Definition: Markov Parameters

Given a time-invariant impulse response $g(t)$, the corresponding Markov parameters are defined as

$$
g(0), g^{\prime}(0), g^{(2)}(0), g^{(3)}(0), \ldots
$$

Define also the block Hankel matrices (for $i, j \geq 0$)

$$
\Gamma_{i j}=\left[\begin{array}{cccc}
g(0) & g^{\prime}(0) & \cdots & g^{(j-1)}(0) \\
g^{\prime}(0) & & & \\
\vdots & & \ddots & \\
g^{(i-1)} & & & g^{(i+j-2)}(0)
\end{array}\right]
$$

We have $g^{k}(0)=C A^{k} B$ and

$$
G(s)=g(0) s^{-1}+g^{\prime}(0) s^{-2}+g^{(2)}(0) s^{-3}+\ldots
$$

Th. 8 Realization from Markov Parameters

An analytic impulse response $g(t)$ admits an n-th order time-invariant realization $\dot{x}=A x+B u, y=C x$ if and only if there exist positive integers $l, k \leq n$ such that

$$
\operatorname{rank} \Gamma_{l k}=\operatorname{rank} \Gamma_{l+1, k+j}=n, \quad j=1,2, \ldots
$$

Proof Utilize

$$
\begin{aligned}
\Gamma_{i j} & =M_{i} W_{j} \\
M_{i} & =\left[\begin{array}{c}
C \\
\vdots \\
C A^{i-1}
\end{array}\right] \\
W_{j} & =\left[\begin{array}{llll}
B & A B & \cdots & A^{j-1} B
\end{array}\right]
\end{aligned}
$$

like in the proof of Theorem 6. See Rugh 11.7 for details.

Example

What is the dimension of a minimial realisation of $g(t)=t e^{t}$?
Since $g^{(k)}(0)=k$ we get

$$
\begin{aligned}
& \operatorname{rank} \Gamma_{11}=\operatorname{rank}[0]=0 \\
& \operatorname{rank} \Gamma_{22}=\operatorname{rank}\left[\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right]=2 \\
& \operatorname{rank} \Gamma_{3, k}=\operatorname{rank}\left[\begin{array}{llll}
0 & 1 & 2 & \ldots \\
1 & 2 & 3 & \ldots \\
2 & 3 & 4 & \ldots
\end{array}\right]=\operatorname{rank}\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1
\end{array}\right]=2, k \geq 3
\end{aligned}
$$

so the minimial dimension is 2 . In fact, one can take

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

Theorem 9 - Discrete Time

$$
\begin{aligned}
y(k) & =\sum_{j=k_{0}}^{k} G(k, j) u(j) \\
G(k, j) & =C(k) \Phi(k, j+1) B(j), k \geq j+1
\end{aligned}
$$

Cannot define weighting pattern, that is $G(k, j)$ also for $k<j$, since Φ need not be invertible.

$$
\begin{gathered}
\exists H(k), F(k): G(k, j)=H(k) F(j), k \geq j+1 \\
\Longrightarrow \quad \exists \text { realization }\{A(k), B(k), C(k)\}
\end{gathered}
$$

Proof

$$
A(k)=I \Rightarrow \Phi(k, j+1)=I
$$

Example

$$
x(k+1)=u(k), \quad y(k)=x(k)
$$

is a realisation of

$$
G(k, j)=\delta(k-j-1), \quad k \geq j+1
$$

but you can not find a factorisation of the form

$$
G(k, j)=H(k) F(j), \quad k \geq j+1
$$

Example

$$
\begin{aligned}
x(k+1) & =x(k)+\left[\begin{array}{c}
1 \\
\delta(k-1)
\end{array}\right] u(k) \\
y(k) & =\left[\begin{array}{ll}
1 & \delta(k)
\end{array}\right] x(k)
\end{aligned}
$$

is reachable and observable on any interval containing $k=0,1,2$, but it is not a minimal realisation of the pulse response

$$
G(k, j)=1+\delta(k) \delta(j-1)=1, \quad k \geq j+1
$$

since

$$
z(k+1)=z(k)+u(k), \quad y(k)=z(k)
$$

is of lower dimension.

Some things we (and Rugh) left out

We did not obtain a method to find a minimal (A, B, C, D) from a given $G(s)$ in the case of non-distinct poles. One solution is to use the non-minimal realisation in Theorem 5 and then apply Kalman decomposition (or balanced realisation). But there if of course a more direct approach see [Kailath, Linear Systems].

We could have talked about identification by state-space methods. See the course in Identification if interested.

