Linear Systems, 2019 - Lecture 3

- Controllability
- Observability
- Controller and Observer Forms
- Balanced Realizations

Rugh, chapters $9,13,14$ (only pp 247-249) and (25)

Controllability

How should controllability be defined ?
Some (not used) alternatives:

By proper choice of control signal u

- any state x_{0} can be made an equilibrium
- any state trajectory $x(t)$ can be obtained
- any output trajectory $y(t)$ can be obtained

The most fruitful definition has instead turned out to be the following

Controllability

The state equation

$$
\dot{x}(t)=A(t) x(t)+B(t) u(t), \quad x\left(t_{0}\right)=x_{0}
$$

is called controllable on $\left(t_{0}, t_{f}\right)$, if for any x_{0}, there exists $u(t)$ such that $x\left(t_{f}\right)=0$ ("Controllable to origin")

Question: Is this equivalent to the following definition:
"for $x_{0}=0$ and any x_{1}, there exists $u(t)$ such that $x\left(t_{f}\right)=x_{1}$ "
("Controllable from origin")

The audience is thinking!
Hint: $x\left(t_{f}\right)=\Phi\left(t_{f}, t_{0}\right) x\left(t_{0}\right)+\int_{t_{0}}^{t_{f}} \Phi\left(t_{f}, t\right) B(t) u(t) d t$

Controllability Gramian

The matrix function

$$
W\left(t_{0}, t_{f}\right)=\int_{t_{0}}^{t_{f}} \Phi\left(t_{0}, t\right) B(t) B(t)^{T} \Phi\left(t_{0}, t\right)^{T} d t
$$

is called the controllability Gramian.

A main result is the following

Th. 1 Controllability Criterion (Rugh 9.2)

The state equation is controllable on $\left(t_{0}, t_{f}\right)$ if and only if the controllability Gramian $W\left(t_{0}, t_{f}\right)$ is invertible.

Remark: We will see later (Lec.6) that the minimal (squared) control energy, defined by $\|u\|^{2}:=\int_{t_{0}}^{t_{f}}|u|^{2} d t$, needed to move from $x\left(t_{0}\right)=x_{0}$ to $x\left(t_{f}\right)=0$ equals $x_{0}^{T} W\left(t_{0}, t_{f}\right)^{-1} x_{0}$.

Proof of Th. 1

i) Suppose first W is invertible. Given x_{0} the control signal

$$
u(t)=-B^{T} \Phi^{T}\left(t_{0}, t\right) W^{-1}\left(t_{0}, t_{f}\right) x_{0}
$$

will give $x\left(t_{f}\right)=0$ (check!). Hence the system is controllable.
ii) Suppose instead the system is controllable. Want to show W invertible, i.e. that $W x_{0}=0$ implies $x_{0}=0$.
Find u so $0=\Phi x_{0}+\int \Phi B u d t$, i.e. $x_{0}=-\int_{t_{0}}^{t_{f}} \Phi\left(t_{0}, t\right) B(t) u(t) d t$

$$
x_{0}^{T} x_{0}=-\int_{t_{0}}^{t_{f}} \underbrace{x_{0}^{T} \Phi\left(t_{0}, t\right) B(t)}_{:=z(t)} u(t) d t
$$

But this shows $x_{0}=0$ since

$$
\|z(t)\|^{2}=\int_{t_{0}}^{t_{f}} x_{0}^{T} \Phi\left(t_{0}, t\right) B(t) B^{T}(t) \Phi^{T}\left(t_{0}, t\right) x_{0} d t=x_{0}^{T} W x_{0}=0
$$

Th2. LTI Controllability Test - (Rugh 9.5)

The following four conditions are equivalent:
(i) The system $\dot{x}(t)=A x(t)+B u(t)$ is controllable.
(ii) $\operatorname{rank}\left[B A B A^{2} B \ldots A^{n-1} B\right]=n$.
(iii) $\lambda \in \mathbf{C}, p^{T} A=\lambda p^{T}, p^{T} B=0 \quad \Rightarrow p=0$.
(iv) $\operatorname{rank}\left[\begin{array}{ll}\lambda I-A & B\end{array}\right]=n \quad \forall \lambda \in \mathbf{C}$.

The conditions (iii) and (iv) are called the PBH test (Popov-Belevitch-Hautus), see p221.

Notation: $\mathcal{C}(A, B):=\left[B A B A^{2} B \ldots A^{n-1} B\right]$

Th. 3 LTI Uncontrollable System Decomposition

Suppose that $0<q<n$ and

$$
\operatorname{rank}\left[\begin{array}{lllll}
B & A B & A^{2} B & \ldots & A^{n-1} B
\end{array}\right]=q<n
$$

Then there exists an invertible $P \in \mathbf{R}^{n \times n}$ such that

$$
P^{-1} A P=\left[\begin{array}{cc}
\widehat{A}_{11} & \widehat{A}_{12} \\
0 & \widehat{A}_{22}
\end{array}\right], \quad \quad P^{-1} B=\left[\begin{array}{c}
\widehat{B}_{11} \\
0
\end{array}\right]
$$

where \widehat{A}_{11} is $q \times q, \widehat{B}_{11}$ is $q \times m$, and

$$
\operatorname{rank}\left[\widehat{B}_{11} \quad \widehat{A}_{11} \widehat{B}_{11} \ldots \widehat{A}_{11}^{q-1} B_{11}\right]=q
$$

Range and Null Spaces

Range space (Image) of $M: X \rightarrow Y$:

$$
\mathcal{R}(M)=\{M x: x \in X\} \subset Y
$$

Null space (Kernal) of $M: X \rightarrow Y$:

$$
\mathcal{N}(M)=\{x: M x=0\} \subset X
$$

Example:

$$
\begin{aligned}
& \mathcal{R}\left(\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]\right)=\left\{\alpha\left[\begin{array}{l}
1 \\
0
\end{array}\right]: \alpha \in \mathbf{R}\right\} \\
& \mathcal{N}\left(\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]\right)=\left\{\alpha\left[\begin{array}{c}
2 \\
-1
\end{array}\right]: \alpha \in \mathbf{R}\right\}
\end{aligned}
$$

Cayley-Hamilton Theorem

Let $p(s):=\operatorname{det}(s I-A)$ be the char. polynomial of the square matrix A, then

$$
p(A)=0
$$

This means that A^{n}, where n is the size of A, can be written as a linear combination of A^{k} of lower order

$$
A^{n}=-a_{n-1} A^{n-1}-\ldots-a_{1} A-a_{0} I
$$

Proof Th. 3

Use the $n \times n$ matrix $P=\left[\begin{array}{ll}P_{1} & P_{2}\end{array}\right]$ where P_{1} is an $n \times q$ matrix with lin. indep. columns taken from $\mathcal{C}(A, B)$ and P_{2} is any $n \times(n-q)$ matrix making P invertible. Introduce the notation

$$
P^{-1}=\left[\begin{array}{c}
M \\
N
\end{array}\right] \text {, then }\left[\begin{array}{c}
M \\
N
\end{array}\right]\left[\begin{array}{ll}
P_{1} & P_{2}
\end{array}\right]=\left[\begin{array}{cc}
I_{q} & 0 \\
0 & I_{n-q}
\end{array}\right] . \text { Note } N P_{1}=0
$$

$\mathcal{R}(B) \subset \mathcal{R}\left(P_{1}\right) \Rightarrow N B=0 \Rightarrow \quad \widehat{B}=P^{-1} B=\left[\begin{array}{c}M \\ N\end{array}\right] B=\left[\begin{array}{c}\widehat{B}_{1} \\ 0\end{array}\right]$
$\mathcal{R}\left(A P_{1}\right) \subset \mathcal{R}\left(P_{1}\right) \Rightarrow N A P_{1}=0 \Rightarrow \widehat{A}=P^{-1} A P=\left[\begin{array}{l}M \\ N\end{array}\right] A P=\left[\begin{array}{cc}\widehat{A}_{11} & \widehat{A}_{12} \\ 0 & \widehat{A}_{22}\end{array}\right]$
$\operatorname{rank} \mathcal{C}\left(\widehat{A}_{11}, \widehat{B}_{1}\right)=\operatorname{rank} \mathcal{C}(A, B)=q$

Proof of Th. 2

(i) \Rightarrow (ii) If (ii) fails, then after a coordinate change as in Theorem 3, \hat{x}_{2} is unaffected by the input, so (i) fails.
(ii) \Rightarrow (i) If $p^{T} W\left(t_{0}, t_{f}\right) p=0$ for some $p \neq 0$, then

$$
\begin{aligned}
\int_{t_{0}}^{t_{f}} p^{T} e^{A\left(t_{0}-t\right)} B B^{T} e^{A^{T}\left(t_{0}-t\right)} p d t & =0 \\
p^{T} e^{A\left(t_{0}-t\right)} B & =0 \quad \forall t \in\left[t_{0}, t_{f}\right]
\end{aligned}
$$

Differentiation with respect to t at $t=t_{0}$, gives

$$
p^{T}\left[B \quad A B \ldots A^{n-1} B\right]=0
$$

so (ii) fails.

Proof Th2 continued

(ii) \Rightarrow (iii) If iii fails, i.e. $p^{T} A=\lambda p^{T}$ and $p^{T} B=0$ for $p \neq 0$ then $p^{T}\left[\begin{array}{ll}B & \left.A B \ldots A^{n-1} B\right]=0 \text {, so (ii) fails. }\end{array}\right.$
(iii) \Rightarrow (ii) If $\operatorname{rank}\left[B \ldots A^{n-1} B\right]=q<n$ then let P be defined as in Theorem 3 and let $p_{2}^{T} \hat{A}_{22}=\lambda p_{2}{ }^{T}$ and $p^{T}=\left[\begin{array}{ll}0 & p_{2}\end{array}\right] P^{-1}$. Then

$$
\begin{aligned}
p^{T} B & =\left[\begin{array}{ll}
0 & p_{2}^{T}
\end{array}\right]\left[\begin{array}{c}
\hat{B}_{11} \\
0
\end{array}\right]=0 \\
p^{T} A & =\left[\begin{array}{ll}
0 & p_{2}^{T}
\end{array}\right]\left[\begin{array}{cc}
\hat{A}_{11} & \hat{A}_{12} \\
0 & \hat{A}_{22}
\end{array}\right] P^{-1}=\lambda\left[\begin{array}{ll}
0 & p_{2}^{T}
\end{array}\right] P^{-1}=\lambda p^{T}
\end{aligned}
$$

so (iii) fails.
(iv) $\Leftrightarrow\left\{p^{T}\left[\begin{array}{ll}\lambda-A & B\end{array}\right]=0 \Rightarrow p=0\right\} \Leftrightarrow$ (iii)

Tank example - controllable?

Tank example - controllable?

Example - Single Input Diagonal Systems

For which λ_{i}, b_{i} is this system controllable?

$$
\dot{x}=\left[\begin{array}{cccc}
\lambda_{1} & & & 0 \\
& \lambda_{2} & & \\
& & \ddots & \\
0 & & & \lambda_{n}
\end{array}\right] x+\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right] u
$$

Method 1: When is the controllability matrix invertible?

$$
\mathcal{C}(A, B)=\left[\begin{array}{cccc}
b_{1} & b_{1} \lambda_{1} & b_{1} \lambda_{1}^{2} & \ldots b_{1} \lambda_{1}^{n-1} \\
b_{2} & b_{2} \lambda_{2} & b_{2} \lambda_{2}^{2} & \ldots b_{2} \lambda_{2}^{n-1} \\
\vdots & & & \\
b_{n} & b_{n} \lambda_{n} & b_{n} \lambda_{n}^{2} & \ldots b_{n} \lambda_{n}^{n-1}
\end{array}\right]
$$

After some work: When all λ_{i} are distinct and all b_{i} nonzero.
Method 2: The PBH-test gives you this result immediately!

LTV Reachability

The equation

$$
\dot{x}(t)=A(t) x(t)+B(t) u(t), \quad x\left(t_{0}\right)=0
$$

is called reachable on $\left(t_{0}, t_{f}\right)$, if for any x_{f}, there exists $u(t)$ such that $x\left(t_{f}\right)=x_{f}$.

The matrix function

$$
\begin{aligned}
W_{r}\left(t_{0}, t_{f}\right) & =\int_{t_{0}}^{t_{f}} \Phi\left(t_{f}, t\right) B(t) B(t)^{T} \Phi\left(t_{f}, t\right)^{T} d t \\
& =\Phi\left(t_{f}, t_{0}\right) W\left(t_{0}, t_{f}\right) \Phi\left(t_{f}, t_{0}\right)^{T}
\end{aligned}
$$

is called the reachability Gramian.

Continuous time controllability and reachability are equivalent

LTV Observability

The equation

$$
\begin{aligned}
\dot{x}(t) & =A(t) x(t), \quad x\left(t_{0}\right)=x_{0} \\
y(t) & =C(t) x(t)
\end{aligned}
$$

is called observable on $\left[t_{0}, t_{f}\right]$ if any initial state x_{0} is uniquely determined by the output $y(t)$ for $t \in\left[t_{0}, t_{f}\right]$.

It is called reconstructable on $\left[t_{0}, t_{f}\right]$ if the state $x\left(t_{f}\right)$ is uniquely determined by the output $y(t)$ for $t \in\left[t_{0}, t_{f}\right]$.

In continuous time, observability and reconstrubality are equivalent (why?)

Observability Gramian

The matrix function

$$
M\left(t_{0}, t_{f}\right)=\int_{t_{0}}^{t_{f}} \Phi\left(t, t_{0}\right)^{T} C(t)^{T} C(t) \Phi\left(t, t_{0}\right) d t
$$

is called the observability Gramian of the system

$$
\begin{aligned}
\dot{x}(t) & =A(t) x(t) \\
y(t) & =C(t) x(t)
\end{aligned}
$$

Remark: Operator interpretation (see later)

$$
M\left(t_{0}, t_{f}\right)=L^{*} L
$$

where $L: \mathbf{R}^{n} \rightarrow L_{2}^{m}\left(t_{0}, t_{f}\right)$ with

$$
\left(L x_{0}\right)(t)=C(t) \Phi\left(t, t_{0}\right) x_{0}, \quad x_{0} \in \mathbf{R}^{n}
$$

Theorem 4 (Rugh 9.8) - Observability Criterion

The following two conditions are equivalent
(i) The system $\{A(t), C(t)\}$ is observable on $\left[t_{0}, t_{f}\right]$.
(ii) $M\left(t_{0}, t_{f}\right)>0$

Th. 5 (Rugh 9.11) - LTI Observability

The following four conditions are equivalent:
(i) The system $\dot{x}(t)=A x(t), y(t)=C x(t)$ is observable.
(ii) $\operatorname{rank}\left[\begin{array}{c}C \\ C A \\ \vdots \\ C A^{n-1}\end{array}\right]=n$.
(iii) $\lambda \in \mathbf{C}: A p=\lambda p, C p=0 \quad \Rightarrow p=0$
(iv) $\operatorname{rank}\left[\begin{array}{c}\lambda I-A \\ C\end{array}\right]=n \quad \forall \lambda \in \mathbf{C}$.

Theorem 6 - Unobservable State Equation

Suppose that rank $\left[\begin{array}{c}C \\ C A \\ \vdots \\ C A^{n-1}\end{array}\right]=l<n$
Then there exists an invertible $Q \in \mathbf{R}^{n \times n}$ such that

$$
Q^{-1} A Q=\left[\begin{array}{cc}
\hat{A}_{11} & 0 \\
\hat{A}_{21} & \hat{A}_{22}
\end{array}\right], \quad C Q=\left[\begin{array}{cc}
\hat{C}_{11} & 0
\end{array}\right]
$$

where \hat{A}_{11} is $l \times l, \hat{C}_{11}$ is $p \times l$, and rank $\left[\begin{array}{c}\hat{C}_{11} \\ \hat{C}_{11} \hat{A}_{11} \\ \vdots \\ \hat{C}_{11} \hat{A}_{11}^{l-1}\end{array}\right]=l$.

LTI Controller Canonical Form - Single Input

Suppose (A, b) is controllable. There is an invertible P such that a state transformation will bring the system to the form

$$
\begin{aligned}
& P A P^{-1}=A_{c}=\left[\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1 \\
-a_{0} & -a_{1} & \ldots & -a_{n-1}
\end{array}\right], \quad P B=B_{c}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right] \\
& \operatorname{det}(s I-A)=s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}
\end{aligned}
$$

Proof

Introduce some notation for $\mathcal{C}^{-1}(A, b)$:

$$
\left[\begin{array}{c}
M_{1} \\
\vdots \\
M_{n}
\end{array}\right]:=\left[\begin{array}{llll}
b & A b \ldots A^{n-1} b
\end{array}\right]^{-1} \Rightarrow \begin{aligned}
& M_{n} A^{k} b=0, \quad k=0, \ldots, n-2 \\
& M_{n} A^{n-1} b=1
\end{aligned}
$$

We can use the transformation $z=P x$ where

$$
P=\left[\begin{array}{c}
M_{n} \\
M_{n} A \\
\vdots \\
M_{n} A^{n-1}
\end{array}\right]
$$

That P is invertible follows from calculation of $P \mathcal{C}$ (the new controllability matrix)

Proof

$$
\begin{aligned}
& P \mathcal{C}=\left[\begin{array}{c}
M_{n} \\
M_{n} A \\
\vdots \\
M_{n} A^{n-1}
\end{array}\right]\left[\begin{array}{llll}
b & A b & \ldots & A^{n-1} b
\end{array}\right]=\left[\begin{array}{cccc}
0 & \ldots & 0 & 1 \\
\vdots & \vdots & . & \star \\
0 & 1 & \star & \star \\
1 & \star & \ldots & \star
\end{array}\right] \\
& P A=\left[\begin{array}{c}
M_{n} A \\
M_{n} A^{2} \\
\vdots \\
M_{n} A^{n}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1 \\
-a_{0} & -a_{1} & \ldots & -a_{n-1}
\end{array}\right]\left[\begin{array}{c}
M_{n} \\
M_{n} A \\
\vdots \\
M_{n} A^{n-1}
\end{array}\right]=A_{c} P \\
& P B=\left[\begin{array}{c}
M_{n} b \\
M_{n} A b \\
\vdots \\
M_{n} A^{n-1} b
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]=B_{c}
\end{aligned}
$$

Controllability Index

To construct the corresponding controller form when we have multiple inputs ($m>1$) we need the following

Definition: Let $B=\left[\begin{array}{lll}B_{1} & \ldots & B_{m}\end{array}\right]$. For $j=1, \ldots, m$, the controllability index ρ_{j} is the smallest integer such that $A^{\rho_{j}} B_{j}$ is linearly dependent on the column vectors occuring to the left of it in the controllability matrix

$$
\left[\begin{array}{llll}
B & A B & \ldots & A^{n-1} B
\end{array}\right]
$$

Notation for Controller Form

Given a contr. system $\{A, B\}$, with controllability indices $\rho_{1}, \ldots \rho_{m}$, define

$$
\begin{gathered}
M=\left[\begin{array}{c}
M_{1} \\
\vdots \\
M_{n}
\end{array}\right]:=\left[\begin{array}{llll}
B_{1} & A B_{1} \ldots A^{\rho_{1}-1} B_{1} & \ldots & B_{m} \ldots A^{\rho_{m}-1} B_{m}
\end{array}\right]^{-1} \\
P=\left[\begin{array}{c}
P_{1} \\
\vdots \\
P_{m}
\end{array}\right], \quad P_{i}=\left[\begin{array}{c}
M_{\rho_{1}+\cdots+\rho_{i}} \\
M_{\rho_{1}+\cdots+\rho_{i}} A \\
\vdots \\
M_{\rho_{1}+\cdots+\rho_{i}} A^{\rho_{i}-1}
\end{array}\right]
\end{gathered}
$$

Notice that it is rather easy to write Matlab code for this.
See Rugh 13.9 for the proof of the following result

Theorem 7, Controller Form - Multiple Inputs

The transformation $z=P x$ gives $\left(A_{c}, B_{c}\right)$ with

Theorem 7, Controller Form - Multiple Inputs

$$
B_{c}=\left[\begin{array}{cccc}
& & & \\
1 & \star & \ldots & \star \\
\hline & & & \\
0 & 1 & \star & \star \\
\hline & & & \\
& & & \\
0 & \ldots & 0 & 1
\end{array}\right]
$$

The block sizes equal the controllability indices ρ_{i}.
If B is not full rank, B_{c} will have a stair-case form.

LTI Feedback \& Eigenvalue Assignment (Rugh 14.9)

Using the controller form it is now easy to prove
Suppose (A, B) is controllable. Given a monic polynomial $p(s)$ there is a feedback control $u=-K x$ so that

$$
\operatorname{det}(s I-A-B K)=p(s)
$$

Proof We can get rid of the \star elements in B_{c} by writing $B_{c}=\tilde{B}_{c} T$ where T is an upper triangular matrix with right inverse. Introduce the new control signal $\tilde{u}=T u$. By state feedback we can now change each line of stars in A_{c}. We can for instance transform A_{c} to a controller form with one big block, with the last row containing the coefficients of $p(s)$.

Definition - Observability Index

Let $C^{T}=\left[C_{1}{ }^{T} \ldots C_{p}^{T}\right]^{T}$. For $j=1, \ldots, p$, the observability index η_{j} is the smallest integer such that $C_{j} A^{\eta_{j}}$ is linearly dependent on the row vectors occuring above it in the observability matrix

$$
\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right]
$$

Theorem 8 -Observer form

Suppose (C, A) is observable. Then there is a transformation $z=P x$, to the form $\dot{z}=A_{o} z, y=C_{o} z$ with

$$
\begin{aligned}
& A_{o}=\text { transpose of the form for } A_{c} \text { above } \\
& C_{o}=\text { transpose of the form for } B_{c} \text { above }
\end{aligned}
$$

The size of the blocks equals the observability indices η_{j}.

Theorem 9 - Time-Invariant Gramian

Let A be exponentially stable. Then, the reachability Gramian
$W_{r}(-\infty, 0)$ equals the unique solution P to the matrix equation

$$
P A^{T}+A P=-B B^{T}
$$

Similarly, the observability Gramian $M(0, \infty)$ equals the solution Q of

$$
Q A+A^{T} Q=-C^{T} C
$$

Proof of Theorem 9

Let $P=W_{r}(-\infty, 0)=\int_{0}^{\infty} e^{A \sigma} B B^{T} e^{A^{T} \sigma} d \sigma$. Then

$$
\begin{aligned}
P A^{T}+A P & =\int_{0}^{\infty} \frac{\partial}{\partial \sigma}\left(e^{A \sigma} B B^{T} e^{A^{T} \sigma}\right) d \sigma \\
& =\left[e^{A \sigma} B B^{T} e^{A^{T} \sigma}\right]_{0}^{\infty} \\
& =-B B^{T}
\end{aligned}
$$

The linear operator (Lyapunov 1893)

$$
L(P)=A P+P A^{T}
$$

has $\mathcal{R}(L)=\mathbf{R}^{n \times n}$ so $\mathcal{N}(L)=\{0\}$ and the solution P is unique.
The equation for the observability Gramian is obtained by replacing A, B with A^{T}, C^{T}.

Balanced Realization

For the stable system (A, B, C), with Gramians P and Q, the variable transformation $\hat{x}=T x$ gives

$$
\begin{aligned}
& \hat{P}=T P T^{*} \\
& \hat{Q}=T^{-*} Q T^{-1}
\end{aligned}
$$

Choosing R, T, unitary U and diagonal Σ from

$$
\begin{aligned}
Q & =R^{*} R \quad \text { (Choleski Factorisation) } \\
R P R^{*} & =U \Sigma^{2} U^{*} \quad(\text { Singular Value Decomposition }) \\
T & =\Sigma^{-1 / 2} U^{*} R
\end{aligned}
$$

gives (check)

$$
\hat{P}=\hat{Q}=\Sigma
$$

The corresponding realization $(\hat{A}, \hat{B}, \hat{C})$ is called a balanced realization of the system (A, B, C).

Truncated Balanced Realization

Let the states be sorted such that Σ is decreasing. The diagonal elements of Σ measure "how controllable and observable" the corresponding states are. With

$$
\begin{aligned}
& \widehat{A}=\left[\begin{array}{ll}
\widehat{A}_{11} & \widehat{A}_{12} \\
\widehat{A}_{21} & \widehat{A}_{22}
\end{array}\right], \quad \widehat{B}=\left[\begin{array}{l}
\widehat{B}_{1} \\
\widehat{B}_{2}
\end{array}\right] \quad \widehat{C}=\left[\begin{array}{ll}
\widehat{C}_{1} & \widehat{C}_{2}
\end{array}\right] \\
& \Sigma=\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right]
\end{aligned}
$$

the system $\left(\widehat{A}_{11}, \widehat{B}_{1}, \widehat{C}_{1}\right)$ is called a truncated balanced realization of the system (A, B, C).

If $\Sigma_{1} \gg \Sigma_{2}$ the truncated system is probably a good approximation. Choose either $D=0$ or to get correct DC-gain.

Example (done with balreal in MATLAB)

$$
\begin{aligned}
& C(s I-A)^{-1} B=\frac{1-s}{s^{6}+3 s^{5}+5 s^{4}+7 s^{3}+5 s^{2}+3 s+1} \\
& \Sigma=\operatorname{diag}\{1.98,1.92,0.75,0.33,0.15,0.0045\} \\
& \widehat{C}(s I-\widehat{A})^{-1} \widehat{B}=\frac{0.20 s^{2}-0.44 s+0.23}{s^{3}+0.44 s^{2}+0.66 s+0.17}
\end{aligned}
$$

Bonus: Full Kalman Decomposition

Simultaneous controller and observer decomposition
Use $P=\left[\begin{array}{llll}P_{1} & P_{2} & P_{3} & P_{4}\end{array}\right]$ where P_{i} has n_{i} columns with
Columns of $\left[\begin{array}{ll}P_{1} & P_{2}\end{array}\right]$ basis for $\mathcal{R}(C)$
Columns of P_{2} basis for $\mathcal{R}(C) \cap \mathcal{N}(O)$
Columns of $\left[\begin{array}{ll}P_{2} & P_{4}\end{array}\right]$ basis for $\mathcal{N}(O)$
Columns of P_{3} chosen so P invertible.

$$
\begin{aligned}
& \hat{A}=\left[\begin{array}{cccc}
\hat{A}_{11} & 0 & \hat{A}_{13} & 0 \\
\hat{A}_{21} & \hat{A}_{22} & \hat{A}_{23} & \hat{A}_{24} \\
0 & 0 & \hat{A}_{33} & 0 \\
0 & 0 & \hat{A}_{43} & \hat{A}_{44}
\end{array}\right], \hat{B}=\left[\begin{array}{c}
\hat{B}_{1} \\
\hat{B}_{2} \\
0 \\
0
\end{array}\right] \\
& C=\left[\begin{array}{llll}
\hat{C}_{1} & 0 & \hat{C}_{3} & 0
\end{array}\right]
\end{aligned}
$$

Kalman's Decomposition Theorem

The system $\left(\hat{A}_{11}, \hat{B}_{1}, \hat{C}_{1}\right)$ is both controllable and observable.
It is of minimal order, n_{1}
The transfer function equals $\hat{C}_{1}\left(s I-\hat{A}_{11}\right)^{-1} \hat{B}_{1}$.

Bonus: More on Controllability

A, B is controllable if and only if

- The only C for which $C(s I-A)^{-1} B=0, \forall s$ is $C=0$
A, C is observable if and only if
- The only B for which $C(s I-A)^{-1} B=0, \forall s$ is $B=0$

$$
\begin{aligned}
& \text { Proof: } 0=C(s I-A)^{-1} B=\sum_{k=0}^{\infty} C A^{k} B / s^{k+1} \Leftrightarrow 0=C A^{k} B, \forall k \Leftrightarrow \\
& 0=C\left[\begin{array}{llll}
B & A B & \ldots & A^{n-1} B
\end{array}\right] \Leftrightarrow 0=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right] B
\end{aligned}
$$

Bonus: Parallel Systems

Let $G_{1}(s)=C_{1}\left(s I-A_{1}\right)^{-1} B_{1}$ and $G_{2}(s)=C_{2}\left(s I-A_{2}\right)^{-1} B_{2}$
If A_{1} and A_{2} have no common eigenvalues then

$$
G_{1}(s)+G_{2}(s) \equiv 0 \Longrightarrow G_{1}(s)=G_{2}(s)=0
$$

Proof: Can assume both systems are minimal. From

$$
G_{1}(s)+G_{2}(s)=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]\left[\begin{array}{cc}
s I-A_{1} & 0 \\
0 & s-A_{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]=0
$$

and the fact that $\left[\begin{array}{ll}C_{1} & C_{2}\end{array}\right],\left[\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right]$ is observable (PBH-test), the previous frame shows that $\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

Bonus: System Zeros (SISO)

Assume (A, b, c) minimal and that z is not an eigenvalue of A.
Then the following are equivalent

- $G(z)=c(z I-A)^{-1} b+d=0$
- With u_{0} arbitrary and $x_{0}:=(z I-A)^{-1} b u_{0}$ we have

$$
\left[\begin{array}{cc}
z I-A & -b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
u_{0}
\end{array}\right]=0
$$

- The following matrix looses rank

$$
\left[\begin{array}{cc}
z I-A & -b \\
c & d
\end{array}\right]
$$

Bonus: Series Connection SISO

Given two minimal systems $n_{i}(s) / d_{i}(s)=c_{i}\left(s I-A_{i}\right)^{-1} b_{i}, \quad i=1,2$
Then the series connection $\frac{n_{2}(s)}{d_{2}(s)} \frac{n_{1}(s)}{d_{1}(s)}$ is

- uncontrollable \Longleftrightarrow there is z so $n_{1}(z)=d_{2}(z)=0$
- unobservable \Longleftrightarrow there is z so $n_{2}(z)=d_{1}(z)=0$

Proof:
Controllable, check when rank $\left[\begin{array}{ccc}z I-A_{1} & 0 & b_{1} \\ -b_{2} c_{1} & z I-A_{2} & 0\end{array}\right] \leq n$
Observable, check when rank $\left[\begin{array}{cc}z I-A_{1} & 0 \\ -b_{2} c_{1} & z I-A_{2} \\ 0 & c_{2}\end{array}\right] \leq n$

