Linear Systems, 2019 - Lecture 2

- Transition Matrix Properties
- Time-varying change of coordinates
- Periodic Systems
- Floquet Decomposition
- Time-varying Transfer Functions

Rugh, Chapter 5 [and Chapter 21]
Main news:

- Properties of LTV systems
- LTP systems

Continuous Time-varying (LTV) Systems

For bounded $A(t)$, the equation

$$
\dot{x}(t)=A(t) x(t), \quad x\left(t_{0}\right)=x_{0}
$$

has a unique solution of the form

$$
x(t)=\Phi\left(t, t_{0}\right) x_{0}
$$

The transition matrix $\Phi\left(t, t_{0}\right)$ can be written as the infinite sum

$$
\begin{aligned}
\Phi\left(t, t_{0}\right)= & I+\int_{t_{0}}^{t} A\left(\sigma_{1}\right) d \sigma_{1} \\
& +\int_{t_{0}}^{t} A\left(\sigma_{1}\right) \int_{t_{0}}^{\sigma_{1}} A\left(\sigma_{2}\right) d \sigma_{2} d \sigma_{1} \\
& +\int_{t_{0}}^{t} A\left(\sigma_{1}\right) \int_{t_{0}}^{\sigma_{1}} A\left(\sigma_{2}\right) \int_{t_{0}}^{\sigma_{2}} A\left(\sigma_{3}\right) d \sigma_{3} d \sigma_{2} d \sigma_{1}
\end{aligned}
$$

Transition Matrix $\Phi\left(t, t_{0}\right)$

The unique solution of the equation

$$
\begin{aligned}
\frac{d}{d t} X(t) & =A(t) X(t) \\
X\left(t_{0}\right) & =I
\end{aligned}
$$

is $X(t)=\Phi\left(t, t_{0}\right)$.
Proof. Let $x(t)=X(t) x_{0}$. Then

$$
\dot{x}(t)=\frac{d}{d t} X(t) x_{0}=A(t) X(t) x_{0}=A(t) x(t)
$$

so

$$
x(t)=\Phi\left(t, t_{0}\right) x_{0}
$$

Hence $\Phi\left(t, t_{0}\right) x_{0}=X(t) x_{0}$ for every x_{0}, so $\Phi\left(t, t_{0}\right)=X(t)$

Nice Example: Scalar Time-variation

Consider

$$
\dot{x}=A a(t) x(t)
$$

The transition matrix is

$$
\begin{aligned}
\Phi\left(t, t_{0}\right) & =I+A \int_{t_{0}}^{t} a\left(\sigma_{1}\right) d \sigma_{1}+A^{2} \int_{t_{0}}^{t} a\left(\sigma_{1}\right) \int_{t_{0}}^{\sigma_{1}} a\left(\sigma_{2}\right) d \sigma_{2} d \sigma_{1}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}\left[\int_{t_{0}}^{t} a(\sigma) d \sigma\right]^{k} \\
& =\exp \left(A \int_{t_{0}}^{t} a(\sigma) d \sigma\right)
\end{aligned}
$$

Second equality is nontrivial.
(Recall Two Tank Example with time-varying flow $q(t)$)

More general case: Commutating $A(t)$

If

$$
A(t) \int_{t_{0}}^{t} A(\sigma) d \sigma=\int_{t_{0}}^{t} A(\sigma) d \sigma A(t)
$$

then

$$
\Phi\left(t, t_{0}\right)=\exp \left\{\int_{t_{0}}^{t} A(\sigma) d \sigma\right\}
$$

Special case: $A(t) A(\tau)=A(\tau) A(t)$ for all t, τ

Example

If $A(t)=a_{1}(t) A_{1}+a_{2}(t) A_{2}$ where A_{1} and A_{2} commute then

$$
\begin{aligned}
\Phi\left(t, t_{0}\right) & =\exp \left\{\int_{t_{0}}^{t} a_{1}(t) A_{1}+a_{2}(t) A_{2} d t\right\} \\
& =\exp \left\{\int_{t_{0}}^{t} a_{1}(t) d t A_{1}\right\} \exp \left\{\int_{t_{0}}^{t} a_{2}(t) d t A_{2}\right\}
\end{aligned}
$$

Example

$$
\begin{aligned}
\dot{x}(t) & =\left[\begin{array}{cc}
1 & \cos t \\
0 & 0
\end{array}\right] x(t) \\
x_{2}(t) & \equiv x_{2}(\tau) \\
\dot{x}_{1}(t) & =x_{1}(t)+\cos t \cdot x_{2}(\tau) \\
x_{1}(t) & =e^{t-\tau} x_{1}(\tau)+\int_{\tau}^{t} e^{t-\sigma} \cos \sigma d \sigma \cdot x_{2}(\tau) \\
& =e^{t-\tau} x_{1}(\tau)+\frac{1}{2}\left(\sin t-\cos t-e^{t-\tau}(\sin \tau-\cos \tau)\right) \cdot x_{2}(\tau) \\
\Phi(t, \tau) & =\left[\begin{array}{cc}
e^{t-\tau} & \frac{1}{2}\left(\sin t-\cos t-e^{t-\tau}(\sin \tau-\cos \tau)\right) \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Sanity check: $\Phi(t, t)=I$ and $\left.\frac{d}{d t} \Phi(t, \tau)\right|_{t=\tau}=\left[\begin{array}{cc}1 & \cos t \\ 0 & 0\end{array}\right]$

Input-driven Continuous System

The equation

$$
\begin{aligned}
\dot{x}(t) & =A(t) x(t)+B(t) u(t) \\
x\left(t_{0}\right) & =x_{0}
\end{aligned}
$$

has the unique solution

$$
x(t)=\Phi\left(t, t_{0}\right) x_{0}+\int_{t_{0}}^{t} \Phi(t, \sigma) B(\sigma) u(\sigma) d \sigma
$$

Proof: Differentiate!

Properties of $\Phi(t, \sigma)$

For any t, τ, σ, the transition matrix satisfies

$$
\begin{aligned}
\Phi(t, \tau) & =\Phi(t, \sigma) \Phi(\sigma, \tau) \text { (semigroup property) } \\
\frac{d}{d t} \Phi(t, \sigma) & =A(t) \Phi(t, \sigma) \\
\frac{d}{d \sigma} \Phi(t, \sigma) & =-\Phi(t, \sigma) A(\sigma)
\end{aligned}
$$

Proof of first property: Let $R(t)=\Phi(t, \sigma) \Phi(\sigma, \tau)$. Then

$$
\begin{aligned}
\frac{d}{d t} R(t) & =A(t) R(t) \\
R(\sigma) & =\Phi(\sigma, \tau)
\end{aligned}
$$

so $R(t)$ must be identical to $\Phi(t, \tau)$

Properties of $\Phi(t, \sigma)$

Proof of third property:

$$
\Phi(\sigma+h, \sigma)=I+h A(\sigma)+o(h) \quad(\text { why? })
$$

Hence, using first property, we have

$$
\Phi(t, \sigma)=\Phi(t, \sigma+h)(I+h A(\sigma)+o(h))
$$

from which we get

$$
\frac{1}{h}(\Phi(t, \sigma+h)-\Phi(t, \sigma))=-\Phi(t, \sigma+h) A(\sigma)+o(1)
$$

from which the result follows as $h \rightarrow 0$

$$
\frac{d}{d \sigma} \Phi(t, \sigma)=-\Phi(t, \sigma) A(\sigma)
$$

Inversion

The transition matrix $\Phi\left(t, t_{0}\right)$ is invertible for any t, t_{0} and

$$
\Phi\left(t, t_{0}\right)^{-1}=\Phi\left(t_{0}, t\right)
$$

Proof. By the composition rule

$$
\Phi\left(t, t_{0}\right) \Phi\left(t_{0}, t\right)=\Phi\left(t_{0}, t\right) \Phi\left(t, t_{0}\right)=\Phi\left(t_{0}, t_{0}\right)=I
$$

Short summary: Properties of $\Phi(t, \sigma)$

For any t, τ, σ, the transition matrix satisfies

$$
\begin{aligned}
\Phi(t, t) & =I \\
\Phi(t, \tau) & =\Phi(t, \sigma) \Phi(\sigma, \tau) \\
(\Phi(t, \sigma))^{-1} & =\Phi(\sigma, t) \\
\frac{d}{d t} \Phi(t, \sigma) & =A(t) \Phi(t, \sigma) \\
\frac{d}{d \sigma} \Phi(t, \sigma) & =-\Phi(t, \sigma) A(\sigma)
\end{aligned}
$$

Change of Variables

Variable change $x(t)=P(t) z(t)$ (with $P(t)$ invertible) gives
$\dot{x}(t)=A(t) x(t), \quad x\left(t_{0}\right)=x_{0}$
$\dot{z}(t)=\left[P(t)^{-1} A(t) P(t)-P(t)^{-1} \dot{P}(t)\right] z(t), \quad z\left(t_{0}\right)=P(t)^{-1} x_{0}$
For the fundamental matrix this means that

$$
\Phi_{P^{-1} A P-P^{-1} \dot{P}}\left(t, t_{0}\right)=P^{-1}(t) \Phi_{A}\left(t, t_{0}\right) P\left(t_{0}\right)
$$

Proof:

$$
\begin{aligned}
A P z=A x & =\dot{x}=\dot{P} z+P \dot{z} \\
z(t) & =\Phi_{P^{-1} A P-P^{-1} \dot{P}}\left(t, t_{0}\right) z\left(t_{0}\right) \\
z(t) & =P^{-1}(t) x(t)=P^{-1}(t) \Phi_{A}(t, \tau) P\left(t_{0}\right) z\left(t_{0}\right)
\end{aligned}
$$

Adjoint system

From $\frac{d}{d \sigma} \Phi_{A}(t, \sigma)=-\Phi_{A}(t, \sigma) A(\sigma)$ follows that $\Phi_{A}^{T}(t, \sigma)$ solves

$$
\frac{d}{d \sigma} Z(\sigma)=-A^{T}(\sigma) Z(\sigma), \quad Z(t)=I
$$

This fact can be written as

$$
\Phi_{-A^{T}}\left(t, t_{0}\right)=\Phi_{A}^{T}\left(t_{0}, t\right)
$$

Discrete time - Definition of $\Phi\left(k, k_{0}\right)$

Define $X(k)$ recursively as

$$
\begin{aligned}
X(k+1) & =A(k) X(k), \quad k \geq k_{0} \\
X\left(k_{0}\right) & =I
\end{aligned}
$$

Then $\Phi\left(k, k_{0}\right)=X(k)$.

Remark: What about $\Phi\left(k, k_{0}\right)$ when $k<k_{0}$?
The example $x(k+1)=0 \cdot x(k)$ shows that $x(k)$ might not be uniquely determined by $x\left(k_{0}\right)$ for $k<k_{0}$!

Difference between discrete and continuous time

Properties of $\Phi\left(k, k_{0}\right)$

$$
\begin{aligned}
\Phi(k+1, j) & =A(k) \Phi(k, j), \quad k \geq j \\
\Phi(k, j-1) & =\Phi(k, j) A(j-1), \quad k \geq j \\
\Phi(k, i) & =\Phi(k, j) \Phi(j, i), \quad k \geq j \geq i
\end{aligned}
$$

If the $n \times n$ matrix $A(k)$ is invertible for each k, then $\Phi(k, j)$ is invertible for each $k \geq j$ and $\Phi(j, k)$ can be defined as

$$
\Phi(j, k)=\Phi(k, j)^{-1}
$$

Change of Variables

Variable change $x(k)=P(k) z(k)$ (with $P(k)$ invertible) we get

$$
\begin{aligned}
x(k+1) & =A(k) x(k), \quad x\left(k_{0}\right)=x_{0} \\
z(k+1) & =\left[P(k+1)^{-1} A(k) P(k)\right] z(k)
\end{aligned}
$$

Hence we have

$$
\Phi_{z}(k, j)=P(k)^{-1} \Phi_{x}(k, j) P(j)
$$

Theorem by Abel-Jacobi-Liouville

Let $A(t)$ be continuous. Then

$$
\operatorname{det} \Phi\left(t, t_{0}\right)=\exp \left(\int_{t_{0}}^{t} \operatorname{tr}[A(\sigma)] d \sigma\right)
$$

Interpretation: Volume contraction
Proof: Let $c_{i j}$ be the cofactor of entry $\phi_{i j}$

$$
\begin{aligned}
\frac{d}{d t} \operatorname{det} \Phi\left(t, t_{0}\right) & =\sum_{i, j}\left(\frac{\partial}{\partial \phi_{i j}} \operatorname{det} \Phi\left(t, t_{0}\right)\right) \dot{\phi}_{i j}\left(t, t_{0}\right) \\
& =\sum_{i, j} c_{i j}\left(t, t_{0}\right) \dot{\phi}_{i j}\left(t, t_{0}\right) \\
& =\operatorname{tr}\left(C\left(t, t_{0}\right)^{T} \dot{\Phi}\left(t, t_{0}\right)\right) \\
& =\operatorname{tr}\left(\Phi\left(t, t_{0}\right) C\left(t, t_{0}\right)^{T} A(t)\right) \\
& =\operatorname{tr}\left(\left(\operatorname{det} \Phi\left(t, t_{0}\right) I\right) A(t)\right) \\
& =\operatorname{tr} A(t) \cdot \operatorname{det} \Phi\left(t, t_{0}\right)
\end{aligned}
$$

Example - From Exam 2009

Is it possible to asymptotically stabilize the oscillative system

$$
\begin{aligned}
\dot{x}(t) & =\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] x
\end{aligned}
$$

by time-varying output feedback

$$
u(t)=-l(t) y(t) ?
$$

Solution

The closed loop system becomes $\dot{x}=A_{c} x$ with

$$
A_{c}=\left[\begin{array}{cc}
0 & 1 \\
-1-l(t) & 0
\end{array}\right]
$$

By the Abel-Liouville theorem we have

$$
\operatorname{det} \Phi(t, 0)=\exp \left(t \operatorname{tr} A_{c}\right) \equiv 1
$$

The system can hence not be asymptotically stable, since an asymptotically stable system must have $\Phi(t, 0) \rightarrow 0$ as $t \rightarrow \infty$ [Why?].

Example - LTV systems and Eigenvalues

Consider the time-varying system

$$
\begin{equation*}
\dot{x}=e^{-A t} B e^{A t} x \tag{1}
\end{equation*}
$$

Note that $e^{-A t} B e^{A t}$ has the same eigenvalues as B

The coordinate change $z(t)=e^{A t} x(t)$ transforms the system to

$$
\begin{equation*}
\dot{z}=(A+B) z \tag{2}
\end{equation*}
$$

Example - LTV Systems and Eigenvalues

Assume

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Then with $z(t)=e^{A t} x(t)$ one has $\|z\|=\|x\|$, so asymptotic stability of (1) and (2) are equivalent (rotating coordinate transformation).

Proof: More generally if $A(t)$ is skew-symmetric for all t , i.e. $A^{T}+A=0$ then $Q(t)=\Phi_{A}(t, 0)$ is orthogonal, i.e. satisfies $Q^{T} Q=I$, since

$$
\frac{d}{d t} Q^{T} Q=Q^{T}\left(A^{T}+A\right) Q=0, \quad Q(0)=I
$$

Therefore $z^{T} z=x^{T} Q^{T} Q x=x^{T} x$.

Example - LTV Systems and Eigenvalues

With the stable matrix

$$
B=\left[\begin{array}{cc}
-1 & M \\
0 & -1
\end{array}\right]
$$

it is easy to see that $A+B$ is unstable for $M>2$.
Hence system (1) above is an unstable time-varying system with stable eigenvalues (equal to -1 for all t).

Example -LTV Systems and Eigenvalues

With the unstable matrix

$$
B=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1 / 2
\end{array}\right]
$$

it is easy to see that $A+B$ is stable.
Hence system (1) above is a stable LTV system having one unstable eigenvalue for all t .

Exercise: Can you find a 2×2 asymptotically stable LTV system with both eigenvalues in the RHPL for all t ?

Linear Time Periodic (LTP) Systems

A linear system

$$
\dot{x}(t)=A(t) x(t)
$$

with

$$
A(t+T)=A(t)
$$

is said to be T-periodic.
The smallest such T is called the period of the system.
A state space system is called T-periodic if all matrices (A, B, C, D) are T-periodic.

The following is the main result for periodic systems

Floquet Decomposition

"Long-term trend + periodic fluctuations"

Let $A(t)$ be bounded and T-periodic. Then for

$$
\dot{x}(t)=A(t) x(t), \quad x\left(t_{0}\right)=x_{0}
$$

the transition matrix can be written

$$
\Phi(t, \tau)=P(t) e^{R(t-\tau)} P(\tau)^{-1}
$$

where $R \in \mathbf{C}^{n \times n}$ is constant and $P(t) \in \mathbf{C}^{n \times n}$ is differentiable, invertible, and T-periodic.

The variable transformation $x(t)=P(t) z(t)$ gives $\dot{z}=R z$

Proof

Since $\Phi(T, 0)$ is nonsingular, there exists a solution $F \in C^{n \times n}$ (in fact infinitly many) to $e^{F}=\Phi(T, 0)$. Choosing any such F , define $R=\frac{1}{T} F$, we then have

$$
e^{R T}=\Phi(T, 0)
$$

Define then $P(t)$ by

$$
P(t)=\Phi(t, 0) e^{-R t}
$$

We get

$$
\begin{aligned}
\Phi(t, \tau) & =\Phi(t, 0) \Phi(\tau, 0)^{-1}=P(t) e^{R(t-\tau)} P(\tau)^{-1} \\
P(t+T) & =\Phi(t+T, 0) e^{-R(t+T)} \\
& =\Phi(t+T, T) \Phi(T, 0) e^{-R T} e^{-R t} \\
& =\Phi(t+T, T) e^{-R t} \\
& =\Phi(t, 0) e^{-R t} \\
& =P(t)
\end{aligned}
$$

Discrete Time Floquet Decomposition

Let $A(k)$ be K-periodic. Then for

$$
x(k+1)=A(k) x(k), \quad x\left(k_{0}\right)=x_{0}
$$

the transition matrix can be written

$$
\Phi(k, j)=P(k) R^{(k-j)} P(j)^{-1}
$$

where $R \in \mathbf{C}^{n \times n}$ and $P(k)$ is K-periodic.

With $x(k)=P(k) z(k)$, this gives

$$
z(k+1)=R z(k)
$$

2-periodic Example

$$
\begin{aligned}
A(k) & =\left[\begin{array}{cc}
(-1)^{k} & 0 \\
0 & 1
\end{array}\right] \\
R^{2}=\Phi(2,0) & =\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \\
R & =\left[\begin{array}{ll}
i & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Note that R is not real-valued!

Extra: Real Floquet Factors for LTP Systems

> (not in Rugh)

It is always possible to obtain a real Floquet factorisation for a real
T -periodic system, by treating the system as having 2 T -periodic coefficients:

From the fact that $\Phi(2 T, 0)=\Phi(T, 0)^{2}$ it can be proved (use Jordan-form) that there is a real matrix G such that

$$
e^{2 T G}=\Phi(2 T, 0)
$$

Then $P(t):=\Phi(t, 0) e^{-t G}$ is real and can as before be seen to be $2 T$-periodic (but not necessarily T-periodic).

See Montagnier, P, et.al Real Floquet Factors of Linear Time-Periodic Systems (Google it)

LTI with sinusodal input - Resonances

Consider the equation

$$
\dot{x}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] x+\left[\begin{array}{c}
0 \\
\sin t
\end{array}\right] \quad x(0)=x_{0}
$$

Laplace transform:

$$
\begin{aligned}
\mathbf{x}_{2}(s) & =C(s I-A)^{-1}\left(B u(s)+x_{0}\right) \\
& =\frac{s}{\left(1+s^{2}\right)^{2}}+\frac{1}{1+s^{2}}\left[\begin{array}{ll}
1 & s
\end{array}\right] x_{0} \\
x_{2}(t) & =\frac{t}{2} \sin t+\left[\begin{array}{ll}
\sin t & \cos t
\end{array}\right] x_{0}
\end{aligned}
$$

For what systems does periodic input give periodic solution?

Periodic Solutions for LTI Systems

For $A \in \mathbf{R}^{n \times n}$ and

$$
\dot{x}(t)=A x(t)+f(t)
$$

one can prove that the following statements are equivalent:
(i) No eigenvalue of A has zero real part.
(ii) A unique T-periodic solution exists for every T-periodic f.

Periodic Solutions for LTP Systems

Theorem 5.15
Let $A(t)$ be continuous and T-periodic and

$$
\dot{x}(t)=A(t) x(t)+f(t)
$$

The following statements are then equivalent:
(i) No nontrivial T-periodic solution exists for $f \equiv 0$.
(ii) A unique T-periodic solution exists for every T-periodic f.

Time-varying Transfer Functions

(not in Rugh)

Transfer function analysis is quite involved for time-varying linear systems

$$
y(t)=\int h(t, \tau) u(\tau) d \tau
$$

For LTI systems, $h(t, \tau)=h(t-\tau, 0)$ and

$$
Y(j \omega)=H(j \omega) U(j \omega), \quad H(j \omega)=\int h(r, 0) e^{-j \omega r} d r
$$

What can be said for general LTV systems?
And for LTP systems, where $h(t+T, \tau+T)=h(t, \tau)$?

Transfer Functions for LTV Systems

Define as usual

$$
\begin{aligned}
U(j \omega)=\int e^{-j \omega \tau} u(\tau) d \tau ; & u(t)=\int e^{j \omega \tau} U(j \omega) d \omega / 2 \pi \\
Y(j \xi)=\int e^{-j \xi t} y(t) d t ; & y(t)=\int e^{j \xi t} Y(j \xi) d \xi / 2 \pi
\end{aligned}
$$

Define also

$$
\begin{aligned}
\widehat{H}(j \xi, \tau) & =\int e^{-j \xi t} h(t, \tau) d t \\
\widetilde{H}(t, j \omega) & =\int e^{j \omega \tau} h(t, \tau) d \tau \\
H(j \xi, j \omega) & =\iint e^{j \omega \tau-j \xi t} h(t, \tau) d \tau d t
\end{aligned}
$$

We then have the following relations (if convergence ok)

Transfer Functions for LTV Systems

For LTI systems we have

$$
H(j \xi, j \omega)=2 \pi \delta(\xi-\omega) H(j \omega)
$$

and

$$
Y(j \omega)=H(j \omega) U(j \omega)
$$

Transfer Functions for LTP Systems

If $h(t+T, \tau+T)=h(t, \tau)$ then (with $\left.\omega_{0}=2 \pi / T\right)$

$$
Y(j \omega)=\sum_{k} H_{k}\left(j \omega-j k \omega_{0}\right) U\left(j \omega-j k \omega_{0}\right)
$$

where

$$
H_{k}(j \omega)=F\left(h_{k}(t)\right)=\int e^{-j \omega t} h_{k}(t) d t
$$

with

$$
h_{k}(t)=\frac{1}{T} \int_{0}^{T} h(r, r-t) e^{-j k \omega_{0} r} d r
$$

The interpretation is that H_{k} describes the signal transfer from input frequency ω to output frequency $\omega+k \omega_{0}$.

Next Week

- Controllability and Observability
- Controller/Observer Forms
- Balanced Realizations

Bonus: Abel-Jacobi-Liouville alt. proof

Want to prove that

$$
\frac{d}{d t} \operatorname{det} \Phi\left(t, t_{0}\right)=\operatorname{tr} A(t) \operatorname{det} \Phi\left(t, t_{0}\right)
$$

Taylor-expansion gives

$$
\begin{aligned}
\Phi\left(t+d t, t_{0}\right) & =\Phi\left(t, t_{0}\right)+A(t) \Phi\left(t, t_{0}\right) d t+o(d t) \\
& =(I+A(t) d t) \Phi\left(t, t_{0}\right)+o(d t)
\end{aligned}
$$

Since the determinant is the product of the eigenvalues, and these satisfy $\lambda_{i}(I+A d t)=1+\lambda_{i}(A) d t$ we get

$$
\begin{array}{r}
\operatorname{det} \Phi\left(t+d t, t_{0}\right)=\prod\left(1+\lambda_{i}(A) d t\right) \cdot \operatorname{det} \Phi\left(t, t_{0}\right)+o(d t) \\
=\left(1+\sum \lambda_{i}(A) d t+o(d t)\right) \cdot \operatorname{det} \Phi\left(t, t_{0}\right)+o(d t)
\end{array}
$$

From which the result follows by letting $d t \rightarrow 0$.

Bonus: The Oscillating Inverted Pendulum

The unstable equilibrium becomes stable if the point of suspension oscillates fast in the vertical direction:

Pendulum length l
Oscillation amplitude $a \ll l$
Period of oscillation 2τ
Acceleration supposed constant equal to $\pm c$ (so $c=8 a / \tau^{2}$)
Assume

$$
\ddot{x}=\left(\omega^{2} \pm d^{2}\right) x
$$

where the sign changes after time τ, where $\omega^{2}=g / l$ and $d^{2}=c / l$. If the oscillation of the suspension is fast enough, $c>g$, then $d^{2}=8 a /\left(l \tau^{2}\right)>\omega^{2}$.

Bonus: The Oscillating Inverted Pendulum

If you have time over:
[a.] Show that $\Phi(2 \tau, 0)=A_{2} A_{1}$
$A_{1}=\left[\begin{array}{cc}\cosh k \tau & 1 / k \sinh k \tau \\ k \sinh k \tau & \cosh k \tau\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}\cos \Omega \tau & 1 / \Omega \sin \Omega \tau \\ -\Omega \sin \Omega \tau & \cos \Omega \tau\end{array}\right]$
where $k^{2}=d^{2}+\omega^{2}$ and $\Omega^{2}=d^{2}-\omega^{2}$.
[b.] Show that $\operatorname{det}(\Phi(t, 0))=1, t=2 \tau, 4 \tau, 6 \tau, \ldots$ and that the criterion for stability is $|\operatorname{tr}(\Phi(2 \tau, 0))|<2$
[c.] Suppose that $a \ll l$. Show that the system is stable for sufficiently large $c \gg g$. The stability condition is approximately

$$
c / g>(3 / 2) l / a
$$

