Linear Systems, 2019 - Lecture 1

- Introduction
- Multivariable Time-varying Systems
- Transition Matrices
- Controllability and Observability
- Realization Theory
- Stability Theory
- Linear Feedback
- Multivariable input/output descriptions
- Some Bonus Material

Lecture 1

- State equations
- Linearization
- Examples
- Transition matrices

Rugh, chapters 1-4
Main news:

- Linearization around trajectory
- Transition matrix $\Phi(t, \tau)$

Linear Time-Invariant (LTI) System

State Representation

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), \quad x(0)=0 \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

Convolution Representation

$$
\begin{aligned}
y(t) & =\int_{0}^{t} G(t-\tau) u(\tau) d \tau \\
G(t) & =C e^{A t} B+\delta(t) D \quad \text { (impulse response) }
\end{aligned}
$$

Transfer Function Representation

$$
\begin{aligned}
\mathbf{y}(s) & =\mathbf{G}(s) \mathbf{u}(s) \\
\mathbf{G}(s) & :=\int_{0-}^{\infty} e^{-s t} G(t) d t=C(s I-A)^{-1} B+D
\end{aligned}
$$

Time-varying Linear System

State Representation

$$
\begin{aligned}
\dot{x}(t) & =A(t) x(t)+B(t) u(t), \quad x(0)=0 \\
y(t) & =C(t) x(t)+D(t) u(t)
\end{aligned}
$$

Integral Representation

$$
y(t)=\int_{0}^{t} G(t, \tau) u(\tau) d \tau+D(t) u(t)
$$

Operator Representation

$$
y=L u
$$

Example: Two Tank System

Flow: $q(t)$
Volumes: V_{1}, V_{2} (constant)
Concentrations: $u(t), x_{1}(t), x_{2}(t)$
Dynamics:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{d}{d t}\left(V_{1} x_{1}\right)=q u-q x_{1} \\
\frac{d}{d t}\left(V_{2} x_{2}\right)=q x_{1}-q x_{2}
\end{array}\right. \\
& \dot{x}(t)=\left[\begin{array}{cc}
-\frac{1}{V_{1}} & 0 \\
\frac{1}{V_{2}} & -\frac{1}{V_{2}}
\end{array}\right] q(t) x(t)+\left[\begin{array}{c}
\frac{1}{V_{1}} \\
0
\end{array}\right] q(t) u(t)
\end{aligned}
$$

Example: Electric Circuit (RLC circuit)

See Fig 2.4

Capacitor Dynamics:

$$
i(t)=\frac{d}{d t}\left(c(t) u_{c}(t)\right)
$$

Inductor Dynamics:

$$
u_{l}(t)=\frac{d}{d t}(l(t) i(t))
$$

State Representation: $x=\left[u_{c} i\right]^{T}$

$$
\dot{x}(t)=\left[\begin{array}{cc}
-\dot{c} / c & 1 / c \\
-1 / l & -(r+i) / l
\end{array}\right] x(t)+\left[\begin{array}{c}
0 \\
1 / l
\end{array}\right] u(t)
$$

Discrete Time LTI System

State Representation

$$
\begin{aligned}
x(k+1) & =A x(k)+B u(k), \quad x(0)=0 \\
y(k) & =C x(k)+D u(k)
\end{aligned}
$$

Convolution Representation

$$
\begin{aligned}
y(k) & =\sum_{l=0}^{k} G(k-l) u(l) \\
G(k) & =\left\{\begin{array}{ll}
D & k=0 \\
C A^{k-1} B & k \geq 1
\end{array} \quad\right. \text { (impulse response) }
\end{aligned}
$$

Transfer Function Representation

$$
\begin{aligned}
\mathbf{y}(z) & =\mathbf{G}(z) \mathbf{u}(z) \\
\mathbf{G}(z) & :=\sum_{k=0}^{\infty} G(k) z^{-k}=C(z I-A)^{-1} B+D
\end{aligned}
$$

Example: Shift Register

$$
\begin{aligned}
x & =\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right]^{T} \\
x(k+1) & =\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] x(k)+\left[\begin{array}{c}
1 \\
0 \\
0 \\
0
\end{array}\right] u(k) \\
y(k) & =\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right] x(k)
\end{aligned}
$$

Linearization around a trajectory

Consider

$$
\dot{x}(t)=f(x(t), u(t), t), \quad x(0)=x_{0}
$$

with solution $\tilde{x}(t)$ for $u(t)=\tilde{u}(t)$ and $x_{0}=\tilde{x}_{0}$.
Let $x_{\delta}=x-\tilde{x}$. Assuming differentiability of f,

$$
\begin{aligned}
& f\left(\tilde{x}+x_{\delta}, \tilde{u}+u_{\delta}, t\right)-f(\tilde{x}, \tilde{u}, t) \\
& =\frac{\partial f}{\partial x}(\tilde{x}, \tilde{u}, t) x_{\delta}+\frac{\partial f}{\partial u}(\tilde{x}, \tilde{u}, t) u_{\delta}+o\left(\left|x_{\delta}\right|,\left|u_{\delta}\right|\right)
\end{aligned}
$$

Hence, with

$$
A(t)=\frac{\partial f}{\partial x}(\tilde{x}, \tilde{u}, t), \quad B(t)=\frac{\partial f}{\partial u}(\tilde{x}, \tilde{u}, t)
$$

the linearization around $(\tilde{x}(t), \tilde{u}(t))$ is

$$
\dot{x}_{\delta}(t)=A(t) x_{\delta}(t)+B(t) u_{\delta}(t), \quad x_{\delta}(0)=x_{0}-\tilde{x}_{0}
$$

Example: Communications Satellite

Spherical coordinates: $x=\left[\begin{array}{llll}r & \dot{r} & \theta & \dot{\theta}\end{array} \dot{\phi}\right]^{T}$ Input: $u=\left[\begin{array}{lll}u_{r} & u_{\theta} & u_{\phi}\end{array}\right]^{T}$, Output: $y=\left[\begin{array}{lll}r & \theta & \phi\end{array}\right]^{T}$

Dynamics:

$$
\begin{aligned}
\dot{x}(t) & =f(x(t), u(t), t) \\
& =\left[\begin{array}{c}
\dot{r} \\
r \dot{\theta}^{2} \cos ^{2} \phi+r \phi^{2}-k / r^{2}+u_{r} / m \\
\dot{\theta} \\
-2 \dot{r} \dot{\theta} / r+2 \dot{\theta} \dot{\phi} \sin \phi / \cos \phi+u_{\theta} \cos \phi /(m r) \\
\dot{\phi} \\
-\dot{\theta}^{2} \cos \phi \sin \phi-2 \dot{r} \dot{\phi} / r+u_{\phi} /(m r)
\end{array}\right]
\end{aligned}
$$

Linearized Communications Satellite

Circular equatorial orbit:

$$
\begin{aligned}
\tilde{x} & =\left[\begin{array}{llllll}
\tilde{r} & 0 & \tilde{\omega} t & \tilde{\omega} & 0 & 0
\end{array}\right]^{T} \\
\tilde{u} & \equiv 0
\end{aligned}
$$

Linearization: $\dot{x}=A x+B u$ with

$$
\begin{aligned}
A & =\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
\tilde{\omega}^{2}-\frac{2 k}{\tilde{\omega}^{3}} & 0 & 0 & 2 \tilde{\omega} \tilde{r} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & -2 \tilde{\omega} / \tilde{r} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -\tilde{\omega}^{2} & 0
\end{array}\right], \\
B & =\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 / m & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 /(m \tilde{r}) & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 /(m \tilde{r})
\end{array}\right]
\end{aligned}
$$

Linearization in Matlab/Simulink

$[\mathrm{X}, \mathrm{U}, \mathrm{Y}, \mathrm{DX}]=\mathrm{TRIM}(' S Y S$ ' $, \mathrm{XO}, \mathrm{UO}, \mathrm{YO}, \mathrm{IX}, \mathrm{IU}, \mathrm{IY})$
fixes X, U and Y to $X O(I X), U O(I U)$ and $Y O(I Y)$.
The variables IX, IU and IY are vectors of indices.
[A, B, C, D] =LINMOD('SYS', X,U) allows the state vector, X, and input, U, to be specified. A linear model will then be obtained at this operating point.

Linearization in Matlab/Simulink

LTV Systems - Fundamental Matrix

Can we find a counter-part to the exponential matrix

$$
\Phi(t)=e^{t A}
$$

for linear time-varying systems?
What properties of the LTI case carry over to LTV systems?

Discrete Time Systems

Given a matrix sequence $A(0), A(1), \ldots$ the equation

$$
x(k+1)=A(k) x(k), \quad x\left(k_{0}\right)=x_{0}
$$

has the unique solution

$$
x(k)=\Phi\left(k, k_{0}\right) x_{0}
$$

defined by the transition matrix

$$
\Phi\left(k, k_{0}\right)=\left\{\begin{array}{l}
A(k-1) \cdots A\left(k_{0}\right), \quad k>k_{0} \\
I, \quad k=k_{0}
\end{array}\right.
$$

Proof by inspection.
What about continuous time?

Continuous Time-varying Linear Systems

$$
\dot{x}(t)=A(t) x(t), \quad x\left(t_{0}\right)=x_{0}
$$

is equivalent to the integral equation

$$
x(t)=x_{0}+\int_{t_{0}}^{t} A(s) x(s) d s
$$

Under weak conditions on $A(t)$ one can show convergence of

$$
x_{k+1}(t):=x_{0}+\int_{t_{0}}^{t} A(s) x_{k}(s) d s
$$

$A(t)$ locally integrable (for instance bounded) is sufficient for existence and uniqueness

From the integral equation it is easy to see that the solution $x(t)$ depends linearly on $x\left(t_{0}\right)$ (how?)

Continuous Time Systems

For bounded $A(t)$, the equation

$$
\dot{x}(t)=A(t) x(t), \quad x\left(t_{0}\right)=x_{0}
$$

hence has a unique solution of the form

$$
x(t)=\Phi\left(t, t_{0}\right) x_{0}
$$

The transition matrix can be written as the infinite sum

$$
\begin{aligned}
\Phi\left(t, t_{0}\right)= & I+\int_{t_{0}}^{t} A\left(\sigma_{1}\right) d \sigma_{1} \\
& +\int_{t_{0}}^{t} A\left(\sigma_{1}\right) \int_{t_{0}}^{\sigma_{1}} A\left(\sigma_{2}\right) d \sigma_{2} d \sigma_{1} \\
& +\int_{t_{0}}^{t} A\left(\sigma_{1}\right) \int_{t_{0}}^{\sigma_{1}} A\left(\sigma_{2}\right) \int_{t_{0}}^{\sigma_{2}} A\left(\sigma_{3}\right) d \sigma_{3} d \sigma_{2} d \sigma_{1}
\end{aligned}
$$

$$
\cdots
$$

Example: Time-invariant System

For

$$
\dot{x}=A x(t), \quad x\left(t_{0}\right)=x_{0}
$$

the transition matrix is

$$
\begin{aligned}
& \Phi\left(t, t_{0}\right) \\
& =I+\int_{t_{0}}^{t} A d \sigma_{1}+\int_{t_{0}}^{t} A \int_{t_{0}}^{\sigma_{1}} A d \sigma_{2} d \sigma_{1}+\cdots \\
& =I+A\left(t-t_{0}\right)+A^{2} \frac{\left(t-t_{0}\right)^{2}}{2}+A^{3} \frac{\left(t-t_{0}\right)^{3}}{6}+\cdots \\
& =e^{A\left(t-t_{0}\right)}
\end{aligned}
$$

so the solution is

$$
x(t)=e^{A\left(t-t_{0}\right)} x_{0}
$$

Calculation of $\exp (A t)$ by Jordan Form

From Matrix Theory: Transformation P exist so $A=P J P^{-1}$ where J is a block diagonal matrix, each block being of the form

$$
\lambda I+N=\left[\begin{array}{cccc}
\lambda & 1 & 0 & \ldots \\
0 & \lambda & 1 & \ldots \\
& & \ddots & 1 \\
0 & \ldots & 0 & \lambda
\end{array}\right]
$$

Therefore $e^{A t}=P e^{J t} P^{-1}$ where $e^{J t}$ is a block diagonal matrix, each block having form

$$
e^{(\lambda I+N) t}=e^{\lambda t} e^{N t}=e^{\lambda t} \sum_{k} \frac{t^{k}}{k!} N^{k}=\left[\begin{array}{cccc}
e^{\lambda t} & t e^{\lambda t} & \frac{t^{2}}{2!} e^{\lambda t} & \cdots \\
0 & e^{\lambda t} & t e^{\lambda t} & \ddots \\
& & \ddots & \\
0 & \cdots & 0 & e^{\lambda t}
\end{array}\right]
$$

WARNING - Common Mistakes in LTV Systems

If $A(t)$ is time-varying, then in general

$$
\Phi\left(t, t_{0}\right) \neq \exp \left\{\int_{t_{0}}^{t} A(\sigma) d \sigma\right\}
$$

Also beware that in general

$$
e^{(A+B) t} \neq e^{A t} e^{B t}
$$

Exception: If $A B=B A$ then $e^{(A+B) t}=e^{A t} e^{B t}$ holds (exercise)

Warning: Stability is NOT determined by eigenvalues

Stability for a time-varying system

$$
\dot{x}=A(t) x
$$

can NOT be determined by the eigenvalues of $A(t)$

For stability, location of the eigenvalues

$$
\lambda(A(t))
$$

in the left half plane for all t is neither sufficient or necessary!

Try to figure out a counter-example yourself!
(There will be one in Lecture 2)

