Linear Systems

Lecturer: Zhiyong Sun
Department Automatic Control
Lund University

Lecture 0

- Course contents
- Some math background
- Vector spaces and mappings
- Matrix theory
- Norms

Material:

- Lecture slides
- R.A. Horn and C.R. Johnson. Matrix Analysis. Cambridge University Press, 2013.

Linear Systems, 2019

- Introduction
- Multivariable Time-varying Systems
- Transition Matrices
- Controllability and Observability
- Realization Theory
- Stability Theory
- Linear Feedback
- Multivariable input/output descriptions
- Some Bonus Material

Linear Systems, 2019

Rugh, Linear System Theory, 2nd edition

- Most of 1-7,9-12,13-14
- Scan 15,20-23,25-29
- Skip 8,16-19, 24
J. P. Hespanha, Linear Systems Theory. Princeton University Press. 2009.

Some more handouts

Course Contents

Credits: 9hp

- 8 Lectures (including this intro)
- 8 Exercise sessions (1st one on Friday, this week)
- 8 Handins (7 best counts). Strict deadlines!
- 24 hour take-home exam (date tbd: Mid-Dec 2019)

Vector spaces

A set of elements $\left\{v_{k}\right\}_{k=1}^{n}$ in a vector space \mathcal{V} over field \mathbb{F} is:

- linearly independent, if $\sum_{k=1}^{n} \alpha_{k} v_{k}=0 \Longrightarrow \alpha_{k}=0, \forall k$.
- $\left\{v_{k}\right\}_{k=1}^{n}$ forms a basis for \mathcal{V}.
- If $\left\{v_{k}\right\}_{k=1}^{n}$ exists for finite n, \mathcal{V} is finite-dimensional. Otherwise, \mathcal{V} is infinite dimensional.
- A subset \mathcal{U} of a vector space \mathcal{V} is called a subspace if

$$
a u_{1}+b u_{2}, \forall u_{1}, u_{2} \in \mathcal{U}, \text { and } a, b \in \mathbb{F} .
$$

Mappings

A functional mapping A from subspace \mathcal{U} into a vector space \mathcal{W} is done by associating each $u \in \mathcal{U}$ with a single $w \in \mathcal{W}$. Usually denoted by $u \mapsto w=A u$.
w is the range (image) of u under A. The subspace is the domain, denoted by $\operatorname{dom}(A)$. The range of A is the set of all images

$$
\operatorname{range}(A):=\{w \in \mathcal{W}: w=A u, u \in \operatorname{dom}(A)\}
$$

The inverse image $w_{0} \in \mathcal{W}$ is the set of all $u \in \operatorname{dom}(A)$ such that $w_{0}=A u$. We obtain the inverse map of A by associating each $w \in \operatorname{range}(A)$ with its inverse image.

A functional mapping $A: \mathcal{U} \rightarrow \mathcal{W}$ is injective (one-to-one) if, for every $u_{1}, u_{2} \in \operatorname{dom}(A), u_{1} \neq u_{2} \Rightarrow A u_{1} \neq A u_{2}$. It is surjective if range $(A)=\mathcal{W}$, and bijective if both.

Matrix representation of mappings

Given two vector spaces \mathcal{V} and \mathcal{W} over \mathbb{F}, a mapping $A: \mathcal{V} \rightarrow \mathcal{W}$ is linear if

$$
A(a v+b u)=a A v+b A u, \quad \forall u, v \in \mathcal{V}, \text { and } a, b \in \mathbb{F}
$$

Let $\left\{v_{k}\right\}_{k=1}^{n}$ and $\left\{w_{k}\right\}_{k=1}^{m}$ be bases for \mathcal{V} and \mathcal{W}, respectively. For each basis vector v_{k}, let $\left\{a_{1 k}, a_{2 k}, \ldots, a_{m k}\right\}$ be the unique scalars satisfying

$$
A v_{k}=a_{1 k} w_{1}+\cdots+a_{m k} w_{m}
$$

The $m n$ scalars $a_{l k} \in \mathbb{F}$ completely characterises the map A. (why?)

Matrix representation of mappings

Let $\left\{v_{k}\right\}_{k=1}^{n}$ and $\left\{w_{k}\right\}_{k=1}^{m}$ be bases for \mathcal{V} and \mathcal{W}, respectively. For each basis vector v_{k}, let $\left\{a_{1 k}, a_{2 k}, \ldots, a_{m k}\right\}$ be the unique scalars satisfying

$$
A v_{k}=a_{1 k} w_{1}+\cdots+a_{m k} w_{m}
$$

The $m n$ scalars $a_{l k} \in \mathbb{F}$ completely characterises the map A. Given any $v=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}$ and let $w=A v=\beta_{1} w_{1}+\cdots+\beta_{n} w_{n}$, by linearity we obtain

$$
\left[\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{m}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right]
$$

The matrix $\left[a_{j k}\right] \in \mathbb{F}^{m \times n}$ is the matrix representation of the linear map A w.r.t. the input basis $\left\{v_{k}\right\}_{k=1}^{n}$ and output basis $\left\{w_{k}\right\}_{k=1}^{m}$.

Matrix Theory

Definition and standard rules
$\operatorname{det}(A)=\sum_{i} a_{i j} c_{i j}=\sum_{j} a_{i j} c_{i j}$
cofactors $c_{i j}=(-1)^{i+j} \operatorname{det}\left(A^{\prime}\right)$ (delete row i and $\operatorname{col} j$)
$\operatorname{adj}(A)=C^{T}$
$\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B), \operatorname{tr}(A B)=\operatorname{tr}(B A)$
$(A B)^{-1}=B^{-1} A^{-1}$ and $(A B)^{T}=B^{T} A^{T}$
$A \operatorname{adj}(A)=\operatorname{det}(A) I$, so $A^{-1}=\frac{\operatorname{adj}(A)}{\operatorname{det}(A)}$
$\frac{d}{d t}(A B)=\frac{d A}{d t} B+A \frac{d B}{d t}$

Eigenvalues

$A v=\lambda v$
Characteristic equation $p(\lambda)=\operatorname{det}(\lambda I-A)=0$
Geometric multiplicity \leq Algebraic multiplicity
If $A^{T}=A$ then eigenvalues are real and there are n orthogonal eigenvectors: $A=V \Lambda V^{T}$ with $V^{T} V=I$

General A : Jordan normal form
$A=V$ blockdiag $\left(J_{i}\right) V^{-1}$ where $J_{i}=\left(\begin{array}{ccc}\lambda_{i} & 1 & \\ & \ddots & 1 \\ & & \lambda_{i}\end{array}\right)$.
Number of Jordan blocks $J_{i}=$ total number of independent eigenvectors of A.

Singular Value Decomposition etc

If $A \in R^{m \times n}$ then

$$
A=U\left(\begin{array}{ll}
\Sigma & 0 \\
0 & 0
\end{array}\right) V^{T}
$$

where $U \in R^{m \times m}, V \in R^{n \times n}$ orthogonal (i.e. $U U^{T}=I$ and $V V^{T}=I$) and
$\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)>0$, where σ_{i} is the square-root of an eigenvalue of $A A^{T}$.
A symmetric $\Longrightarrow A=U \Sigma U^{T}$.

Geometric View

$$
A=\left(\begin{array}{llll}
U_{1} & \ldots & U_{r} & \ldots
\end{array} U_{m}\right)\left(\begin{array}{cc}
\Sigma & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{c}
V_{1}^{T} \\
\vdots \\
V_{r}^{T} \\
\vdots \\
V_{n}^{T}
\end{array}\right)
$$

Null space (kernel) $\operatorname{null}(A):=\{x \mid A x=0\}$
Range space (image) range $(A):=\{y \mid y=A x$ for some $x\}$

$$
R^{n}=\underbrace{\operatorname{range}\left(A^{T}\right)}_{\text {spanned by } V_{1} \ldots V_{r}} \oplus \underbrace{\operatorname{null}(A)}_{\text {spanned by } V_{r+1} \ldots V_{n}}
$$

$$
R^{m}=\underbrace{\operatorname{range}(A)}_{\text {spanned by } U_{1} \ldots U_{r}} \oplus \underbrace{\operatorname{null}\left(A^{T}\right)}_{\text {spanned by } U_{r+1} \ldots U_{m}}
$$

Computation of $e^{A t}$

Definition: $e^{A t}=\sum_{k=0}^{\infty} \frac{1}{k!}(A t)^{k}$. Satisfies $\frac{d X}{d t}=A X$.

- $\frac{d}{d t} e^{A t}=A e^{A t}=e^{A t} A$
- If $A=V \Lambda V^{T}$ then $e^{A t}=V \operatorname{diag}\left(e^{\lambda_{i} t}\right) V^{T}$
- If $A=V$ blockdiag $\left(J_{i}\right) V^{-1}$ then
$e^{A t}=V$ blockdiag $\left(e^{J_{i} t}\right) V^{-1}$
where $e^{J_{i} t}=\left(\begin{array}{cccc}e^{\lambda_{i} t} & t e^{\lambda_{i} t} & \ldots & t^{n_{i}-1} \\ & \ddots & \ddots & \\ & & e^{\left.\lambda_{i}-1\right)!} & t e^{\lambda_{i} t} \\ & & & e^{\lambda_{i} t}\end{array}\right)$
- Laplace-transform $\mathcal{L}\left(e^{A t}\right)=(s I-A)^{-1}$
- $e^{(A+B) t}=e^{A t} e^{B t}$ for all $t \Leftrightarrow A B=B A$. Note: In general, $e^{A t} e^{B t} \neq e^{(A+B) t}$.

Quadratic Forms $x^{T} A x$

Let's assume $A^{T}=A$ (note that $x^{T} A x=x^{T}\left(A+A^{T}\right) x / 2$)
Positive semi-definite: $A \succeq 0 \quad \Leftrightarrow \quad x^{T} A x \geq 0, \forall x$
Positive definite: $A \succ 0 \quad \Leftrightarrow \quad x^{T} A x>0, \forall x \neq 0$
We say that $A \succeq B$ iff $A-B \succeq 0$.

Courant-Fisher formulas when $A^{T}=A$:
$\lambda_{\max }(A)=\max _{x \neq 0} \frac{x^{T} A x}{x^{T} x}=\max _{x^{T} x=1} x^{T} A x$
$\lambda_{\min }(A)=\min _{x \neq 0} \frac{x^{T} A x}{x^{T} x}=\min _{x^{T} x=1} x^{T} A x$
$\lambda_{\min }(A) I \preceq A \preceq \lambda_{\max }(A) I$
$A \succ 0 \Leftrightarrow \lambda_{i}(A)>0, \forall i$

Norms

A norm is a real-valued function satisfying

$$
\begin{align*}
\|x\| & \geq 0, \text { with equality iff } x=0 \tag{1}\\
\|\alpha x\| & =|\alpha|\|x\| \tag{2}\\
\|x+y\| & \leq\|x\|+\|y\| \tag{3}
\end{align*}
$$

Some vector norms on R^{n}

$$
\begin{aligned}
\|x\|_{1} & =\sum\left|x_{i}\right| \\
\|x\|_{2} & =\left(\sum\left|x_{i}\right|^{2}\right)^{1 / 2} \\
\|x\|_{\infty} & =\max \left|x_{i}\right| \\
\|x\|_{p} & =\left(\sum\left|x_{i}\right|^{p}\right)^{1 / p}, \quad 1 \leq p \leq \infty
\end{aligned}
$$

How about $0<p<1$?

Norms: why are they useful?

A sequence $\left\{v_{k}\right\}_{k=1}^{n}$ in a normed vector space \mathcal{V} is said to converge, if $\exists v \in \mathcal{V}$ such that

$$
\left\|v-v_{k}\right\| \nu \rightarrow 0, \text { as } k \rightarrow \infty
$$

If such a v exists, it is unique.
Note that norms quantify the 'closeness' of two elements in a vector space, as we have seen above, i.e. converts convergence of $\left\{v_{k}\right\}_{k=0}^{\infty}$ to a vector v to convergence of $\left\{\left\|v-v_{k}\right\|\right\}_{k=0}^{\infty}$ to 0 !

Equivalence of norms (in finite-dimensional vector space V): given two norms $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$, there exists a pair of real numbers $0<C_{1} \leq C_{2}$ such that, for all $x \in V$ it holds:
$C_{1}\|x\|_{a} \leq\|x\|_{b} \leq C_{2}\|x\|_{a}$.

Signal Norms

$$
\|f\|_{p}=\left(\int_{-\infty}^{\infty}|f(t)|^{p} d t\right)^{1 / p}
$$

For $p=2$, called "signal-energy"
$L_{p}(I)$ denotes functions with $\int_{I}|f(t)|^{p} d t<\infty$

Matrix Norms

A matrix norm is a function satisfying (1)-(3) above
Examples: (induced matrix norms)

$$
\|A\|_{\alpha, \beta}=\sup _{x \neq 0} \frac{\|A x\|_{\beta}}{\|x\|_{\alpha}}
$$

Induced 2-norm

$$
\|A\|_{2}=\sup _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sigma_{\max }(A)
$$

This is often the "default-norm".

Submultiplicative Matrix Norms

If the norm also satisfies $\|A B\| \leq\|A\|\|B\|$, it is called submultiplicative.

All induced matrix norms are submultiplicative.
Frobenius-norm or Hilbert-Schmidt norm (submultiplicative, but not an induced norm)

$$
\|A\|_{F}=\left(\sum_{i, j}\left|a_{i j}\right|^{2}\right)^{1 / 2}=\left(\operatorname{Trace}\left(A^{T} A\right)\right)^{1 / 2}
$$

Scalar Products (Inner Products)

A scalar product $\langle\cdot, \cdot\rangle \mathcal{V} \times \mathcal{V} \mapsto \mathbb{C}$ satisfies
Positive definite $\langle x, x\rangle \geq 0$ with equality iff $x=0$
Conjugate symmetric $\langle x, y\rangle=\overline{\langle y, x\rangle}$
Linearity $\left\langle x, \lambda_{1} y_{1}+\lambda_{2} y_{2}\right\rangle=\lambda_{1}\left\langle x, y_{1}\right\rangle+\lambda_{2}\left\langle x, y_{2}\right\rangle$
Examples

$$
\begin{aligned}
\langle x, y\rangle & =x^{*} y \\
\langle X, Y\rangle & =\operatorname{Trace}\left(X^{*} Y\right) \\
\langle x(t), y(t)\rangle & =\int x(t)^{*} y(t) d t
\end{aligned}
$$

Scalar Products (Inner Products)

A vector space \mathcal{V} equipped with a scalar product is called a scalar product (inner product) space.

We say that x and y are orthogonal, denoted $x \perp y$ if $\langle x, y\rangle=0$
For subspace: $X \perp Y$ means that $x \perp y, \forall x \in X, y \in Y$
Example: $\cos t$ is orthogonal to $\sin t$ in $V=L_{2}([-\pi, \pi])$
Cauchy-Schwarz' inequality:

$$
\sum_{i=1}^{n}\left|x_{i} y_{i}\right|=\langle x, y\rangle \leq\|x\|_{2}\|y\|_{2}
$$

(with equality if and only if x and y are proportional)

Why are these concepts useful?

In this course, we use vector spaces equipped with an inner product and corresponding norm. All these vector spaces have an additional property which is useful in the study of sequence in the vector space (recall why a norm is useful).

A sequence $\left\{v_{k}\right\}_{k=0}^{\infty}$ in a normed vector space \mathcal{V} is Cauchy, if for any $\epsilon>0$, there exists $N(\epsilon)$ such that

$$
\left\|v_{k}-v_{m}\right\|_{\mathcal{V}}<\epsilon, \quad \forall k, m \geq N(\epsilon)
$$

Note: Every convergent sequence is Cauchy, but not necessarily the converse.

Why are these concepts useful?

A normed vector space + every Cauchy sequence is convergent is called complete and known as a Banach space.

A Banach space + scalar product is called a Hilbert space.
In a complete vector space, it is possible to check whether a sequence is convergent by checking if it is Cauchy.

We can consider the modelling of a system in terms of mappings between signal vector spaces. In this course, we deal with mappings between Banach spaces.

Tools

Make sure you know how to simulate an ordinary differential system in e.g. Matlab/Simulink or Maple

You should also be familiar with using some symbolic manipulation program such as Matlab or Maple

You should be able to use the Control System Toolbox (or similar)

