Session 7

Polynomial Matrix Descriptions, Poles and Zeros of MIMO systems

Reading Assignment

Rugh, Ch. 16-17.

Exercises

Exercise 7.1 Make sure you can handle the Maple routines Matrix, HermiteForm, SmithForm. Hint: ?MatrixPolynomialAlgebra[HermiteForm] gives some help text.
Exercise $7.2=$ Rugh 16.1
Exercise $7.3=$ Rugh 16.2
Exercise 7.4 Determine the Smith form, i.e. the invariant polynomials, for the three matrices

$$
\left(\begin{array}{lll}
s & s & 0 \\
s & s & s \\
0 & s & s
\end{array}\right), \quad\left(\begin{array}{ccc}
s+1 & s & 0 \\
s & s & s \\
0 & s & s
\end{array}\right), \quad\left(\begin{array}{ccc}
s+1 & s & 0 \\
s & s+1 & s \\
0 & s+1 & s
\end{array}\right)
$$

either by calculating the determinantal divisors or using Maple.
Exercise $7.5=$ Rugh 16.3
Exercise $7.6=$ Rugh 16.4
Exercise $7.7=$ Rugh 17.4
Exercise $7.8=$ Rugh 17.7

Hand in problems

Exercise 7.9 Compute the poles and zeros (including multiplicities) for

$$
H(s)=\left(\begin{array}{cc}
\frac{s+2}{s+1} & \frac{s-1}{s+2} \\
0 & \frac{s+2}{s+3}
\end{array}\right)
$$

Exercise 7.10 Assume that the square system $G(s)$ is invertible with a proper inverse $G^{-1}(s)$. Show that the poles (with multiplicities) of $G^{-1}(s)$ equal the zeros of $G(s)$ and vice versa (Hint: How are the Smith McMillan forms of $G(s)$ and $G^{-1}(s)$ related?)

