Session 1

Linear Control Systems. Examples. Linearization. Transition Matrix.

Reading Assignment

Rugh (1996 edition) chapters 1-4 and scan Chapter 20 until Example 20.7. The main new thing is to do linearization along a trajectory rather than at an equilibrium, and the definition and properties of the transition matrix $\Phi(t, \tau)$.

Exercise $1.1=$ Rugh 1.9
Exercise 1.2 = Rugh 1.20 (spectral norm)
Exercise $1.3=$ Consider the communications satellite example in Lecture 1 . Show that the linearization of the nonlinear model along the circular equatorial orbit (nominal solution) yields the linearized system given in the lecture slides.
Exercise $1.4=$ Rugh 3.1
Exercise $1.5=$ Rugh 3.10
Exercise $1.6=$ Rugh 3.12 (hint: use Lemma 3.2)
Exercise 1.7 = Rugh 20.6

Hand in problems - to be handed in at exercise session

Handin 1.1 Given

$$
A(t)=\left[\begin{array}{cc}
A_{11}(t) & A_{12}(t) \\
0 & A_{22}(t)
\end{array}\right]
$$

show that the following holds

$$
\Phi\left(t, t_{0}\right)=\left[\begin{array}{cc}
\Phi_{11}\left(t, t_{0}\right) & \Phi_{12}\left(t, t_{0}\right) \\
0 & \Phi_{22}\left(t, t_{0}\right)
\end{array}\right]
$$

where $\frac{d}{d t} \Phi_{i i}\left(t, t_{0}\right)=A_{i i} \Phi_{i i}\left(t, t_{0}\right)$, for $i \in\{1,2\}$. Check that

$$
A(t)=\left[\begin{array}{cc}
-1 & e^{2 t} \\
0 & -1
\end{array}\right]
$$

yields the following state transition matrix

$$
\Phi(t, 0)=\left[\begin{array}{cc}
e^{-t} & \left(e^{t}-e^{-t}\right) / 2 \\
0 & e^{-t}
\end{array}\right]
$$

Handin 1.2 Rugh 3.5
Handin 1.3 Rugh 3.6. Use a symbolic computation software such as Maple or the symbolic toolbox in MATLAB.

