Session 0

Math background

Reading Assignment

Get the book.
If you cannot get a hard copy, here is the link for an e-copy (Link expired by Dec. 2019):
https://www.dropbox.com/s/03tsrmwmvsik5w5/Rugh_Linear\ System\ Theory. pdf?dl=0

Exercise 0.1 Compute $e^{A t}$ for $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$.
Exercise 0.2 Given a positive semi-definite and symmetric matrix $A \in \mathbb{R}^{n \times n}$ where only one of its eigenvalues is 0 and all its column entries sum up to 0 , there exists a matrix $U \in \mathbb{R}^{n \times n}$ satisfying $U^{T} U=U U^{T}=I$ such that

$$
U^{T} A U=\left[\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ddots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & \lambda_{n}
\end{array}\right]
$$

where λ_{i} for $i \in\{2, \ldots, n\}$ is an eigenvalue of A. Show that $U=\left[\begin{array}{cc}\frac{1}{\sqrt{n}} 1_{n} & U_{2}\end{array}\right]$, where 1_{n} denotes a vector with n-entries of 1 . Find U_{2}.
Exercise 0.3 Prove the Courant-Fisher formula for symmetric A

$$
\lambda_{\max }(A)=\max _{\|x\|=1} x^{T} A x=\max _{x \neq 0} \frac{x^{T} A x}{x^{T} x}
$$

Hint: use the decomposition $A=U \Lambda U^{T}$, where $U U^{T}=I$.
Exercise 0.4 Given a $m \times n$ matrix A, show that the spectral norm of A is given by

$$
\|A\|_{2}=\left(\max _{\|x\|=1} x^{T} A^{T} A x\right)^{1 / 2}
$$

Conclude that $\|A\|_{2}=\left(\lambda_{\max }\left(A^{T} A\right)\right)^{1 / 2}=\sigma_{\max }(A)$ (the maximum singular value of A).
Exercise 0.5 Suppose $A(t)$ and $B(t)$ are matrices with entries which are differential functions of t. Show that the following holds

$$
\frac{d}{d t}[A(t) B(t)]=\left(\frac{d}{d t} A(t)\right) B(t)+A(t)\left(\frac{d}{d t} B(t)\right)
$$

Definition: The derivative of a matrix is defined entry-by-entry.
Exercise 0.6 Evaluate the derivative of the inverse of matrix $A(t)$, i.e. find $\frac{d}{d t} A(t)^{-1}$. Hint: use the results above.
Exercise 0.7 Show that if A is symmetric with $0 \prec a I \preceq A \preceq b I$, then

$$
0 \prec b^{-1} I \preceq A^{-1} \preceq a^{-1} I
$$

Exercise 0.8 Let $\|A\|_{F}$ be the Frobenius norm of $A \in \mathbb{R}^{n \times n}$. Show that $\|A\|_{F}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\ldots+\sigma_{r}^{2}$, where σ_{i} for $i \in\{1, \ldots, r\}$ is a singular value of A and r is the rank of A.
Exercise 0.9 Show that $\|A B\|_{F} \leq\|A\|_{F}\|B\|_{F}$, i.e. that the Frobenius-norm is submultiplicative.
Exercise 0.10 Show that $q \in \operatorname{null}\left(A^{T}\right) \Longleftrightarrow q \perp \operatorname{range}(A)$.

Hand in problems - to be handed in at exercise session

Handin 0.1. Use Matlab and/or Maple to calculate characteristic polynomial, eigenvalues, eigenvectors and $e^{A t}$ both numerically and symbolically for $A=$ $\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)$.

Handin 0.2: Prove or disprove the following statements:
Given two real symmetric matrices $A, B \in \mathbb{R}^{n \times n}$:

1. Suppose A and B are both positive definite. Then $A B$ are symmetric and positive definite.
2. Suppose A and B are both positive definite. Then all eigenvalues of $A B$ are real and positive.
3. Suppose $0 \prec A \preceq B$. Then $0 \prec A^{\frac{1}{2}} \preceq B^{\frac{1}{2}}$.
4. Suppose $0 \prec A \preceq B$. Then $0 \prec A^{2} \preceq B^{2}$.

Handin 0.3: Consider the system

$$
\dot{x}(t)=A x(t)+B u(t)
$$

with the input

$$
u(t)=u_{0} \delta(t)+u_{1} \delta^{(1)}(t)+\ldots+u_{r} \delta^{(r)}(t)
$$

where the u_{k} are constants, $\delta(t)$ is the dirac impulse function and $\delta^{(i)}(t)$ denotes its i-th derivative. Let $\theta(t)$ denote the step function $\theta(t)=1_{t \geq 0}$, and $\theta^{\prime}(t)=$ $\delta(t)$. Show that there is a solution of the form

$$
x(t)=e^{A t} v_{0} \theta(t)+v_{1} \delta(t)+\ldots+v_{r} \delta^{(r-1)}(t)
$$

and determine the vectors v_{k}.

