An Optimal Semi-Partitioned Scheduler for Uniform Heterogeneous Multiprocessors

Kecheng Yang
James H. Anderson
Dept. of Computer Science
UNC-Chapel Hill
An Optimal Semi-Partitioned Scheduler for Uniform Heterogeneous Multiprocessors
An Optimal Semi-Partitioned Scheduler for Uniform Heterogeneous Multiprocessors
Uniform Platforms

- A uniform platform of m processors with speeds: $s_1 \geq s_2 \geq ... \geq s_m$.
- n implicit-deadline sporadic tasks.
- An implicit-deadline sporadic task $\tau_i = (C_i, T_i)$.
 - T_i is the period, and relative deadline $D_i = T_i$.
 - C_i is the worst-case execution requirement.
- Utilization $u_i = C_i/T_i$.

Feasibility Condition:

$$\sum_{\text{all}} u_i \leq \sum_{\text{all}} s_i \quad \text{and} \quad \sum_{\text{k largest}} u_i \leq \sum_{\text{k largest}} s_i$$

for $k=1,2,...,m-1$
An Optimal Semi-Partitioned Scheduler for Uniform Heterogeneous Multiprocessors
Semi-Partitioned Schedulers

- Semi-partitioned scheduling extends partitioned scheduling by allowing some tasks to migrate when necessary.

- Under semi-partitioned scheduling, each task is allocated a non-zero share on certain processors.
 - Each fixed task has a non-zero share on only one processor.
 - Each migrating task has non-zero shares on multiple processors.

- Assignment Phase: assigning the shares.
- Execution Phase: constructing the schedule to fit the shares.
Assignment Phase

• On identical multiprocessors, an assignment has to observe the following two criteria:

 • the total allocated share on each processor does not exceed the processor’s capacity;
 (each processor is not overutilized)

 • the total allocated share of a task matches the task’s utilization.
 (each task will receive enough processor supply)
Assignment Phase

• On identical multiprocessors, assigning a task to be fixed on a processor that has enough capacity will not make the assignment infeasible.

\[
\tau_3 = (2,3) \\
\tau_1 = \tau_2 = \tau_3 = (2,3) \\
s_1 = s_2 = 1 \\
\]
Assignment Phase

- However, on uniform platforms, assigning a task to be fixed on a processor with enough capacity to accommodate it may result in the remaining system being infeasible.

\[\tau_2 = (2,1) \]

\[s_1 = 3 \]
\[s_2 = 1 \]

\[\tau_1 = \tau_2 = (2,1) \]

Task executing in parallel is not allowed!
Assignment Phase

- This system is actually feasible.
Feasible Assignment

• How do we determine if assigning a task as fixed will result in the remaining system being infeasible?

• z_i: residual capacity

• A **sufficient** condition for the feasibility of the remaining system:

$$
\sum_{\text{all unassigned tasks}} u_i \leq \sum_{\text{all}} z_i \quad \text{and}
$$

$$
\sum_{\text{k largest unassigned tasks}} u_i \leq \sum_{\text{k largest}} z_i
$$

for $k=1,2,...,m-1$
Feasible Assignment

• Our algorithm:
 • Consider tasks from lightest to heaviest by utilization.
 • Use the Best-Fit bin-packing heuristic to assign the currently considered task as fixed if (1) and (2) will be satisfied after the assignment.

• If the initial system is feasible, then it is guaranteed that:
 • At least the first \((n-m)\) lightest tasks can be fixed.
 • The remaining at most \(m\) heaviest tasks and the remaining platform will satisfy (1) and (2).

 \(\text{i.e, it is guaranteed that at most} \ m \ \text{tasks need to migrate.}\)

\[
\sum_{\text{all unassigned tasks}} u_i \leq \sum_{\text{all } z_i} z_i \quad (1)
\]

\[
\sum_{\text{k largest unassigned tasks}} u_i \leq \sum_{\text{k largest } z_i} z_i \quad (2)
\]
Scheduling frame by frame. A frame is a time interval of a constant length of F.

The processor allocation in each frame is exactly identical.

Based on (1) and (2) and leveraging a prior algorithm, called Level Algorithm*, that was designed for minimizing makespan of independent one-shot jobs, we can derive an allocation table for a frame.

- Applying the Level Algorithm to a set of jobs with execution requirements of $\{u_1 \cdot F, u_2 \cdot F, \ldots, u_m \cdot F\}$ on a uniform platform $\{s'_1 = z_1, s'_2 = z_2, \ldots, s'_m = z_m\}$, where m' is the number of migrating tasks.

- The Level Algorithm guarantees a makespan of at most F.

Example

\[z_i : \text{residual capacity} \]

\[
\begin{align*}
\sum_{\text{all}} u_i & \leq \sum_{\text{all}} z_i \quad (1) \\
\sum_{\text{k largest}} u_i & \leq \sum_{\text{k largest}} z_i \quad (2)
\end{align*}
\]

z_i: residual capacity
Example

\[z_1' = 8 \]
\[z_2' = 2 \]
\[z_3' = 1 \]

\[s_1: z_1 = 8 \]
\[s_2: z_2 = 2 \]
\[s_3: z_3 = 1 \]

\[J_1: u_1 \cdot F = 5F \]
\[J_2: u_2 \cdot F = 3F \]
\[J_3: u_3 \cdot F = 3F \]
Within each frame of length F, the processor supply guaranteed to a migrating task τ_i is $u_i \cdot F$.

Within each frame of length F, the processor supply guaranteed to the set of fixed tasks on processor i is $\sigma_i \cdot F$.

Fixed tasks are prioritized against each other by EDF.

\[\sigma_i = \sum u_k \]

τ_k is a fixed task on processor i
Processor-Supply Properties

Property 1. Within any time interval of length F, the processor supply guaranteed to a migrating task τ_i is $u_i \cdot F$.

Property 2. Within any time interval of length F, the processor supply guaranteed to the set of fixed tasks on processor i is $\sigma_i \cdot F$.

[Diagram showing two frames, frame1 and frame2, with identical durations F and interval $2F$.]
An **Optimal** Semi-Partitioned Scheduler for **Uniform** Heterogeneous Multiprocessors
Optimal Schedulability

• Hard Real-Time (HRT) Schedulable: all deadlines are met.
 • HRT-Optimality: for any system that can be guaranteed all deadlines met, a HRT-optimal scheduler will guarantee so.

• Soft Real-Time (SRT) Schedulable: deadlines may be missed; however, the deadline tardiness is bounded.
 • SRT-Optimality: for any system that can be guaranteed all tasks have bounded deadline tardiness, a SRT-optimal scheduler will guarantee so.
 ➢ Bounded deadline tardiness implies bounded response times.
Optimality

Theorem 5. (HRT Optimality) If the frame size F divides the periods of all tasks, then all deadlines will be met.

Theorem 6. (SRT Optimality) Given any frame size $F > 0$, no job will have tardiness exceeding F.

For a certain system, the allocation table for a frame has the same layout, regardless the frame size F. Therefore, the number of migrations and Level-Algorithm-related preemptions* per frame is fixed when the frame size F varying.

That is, over time, the larger the frame size, the lower the run-time overheads.

This algorithm can make tradeoffs between timeliness and overheads. That is why we call this algorithm EDF-tu (for tunable, uniform).

*I.e., preemptions except those among fixed tasks by EDF.
FAQs

• Why we need to do a semi-partition? Can’t we just directly apply the Level Algorithm to all tasks and compute the allocation table?

That is pretty much what Funk et. al.* considered to establish the feasibility condition on uniform platforms.

The complexity of the schedule for a frame is closely related to the number of tasks that we apply the Level Algorithm to. We only apply the Level Algorithm to the at most \(m \) migrating tasks, instead of totally \(n \) tasks. This improves the overheads significantly.

\[
\sum_{\text{all unassigned tasks}} u_i \leq \sum_{\text{all tasks}} z_i \quad (1)
\]

\[
\sum_{\text{k largest unassigned tasks}} u_i \leq \sum_{\text{k largest}} z_i \quad (2)
\]

FAQs

• While EDF-tu guarantees at most m migrating tasks, can we guarantee fewer migrating tasks?

 ♦ I.e., does there exist an optimal semi-partitioned scheduler that guarantees that there are at most k ($k < m$) migrating tasks?

 ♠ No. We show this by giving a counterexample that there exist a feasible system where m tasks have to migrate.
m tasks have to migrate

- Processors: \(s_1 = 1 + m \cdot \epsilon, \quad s_2 = s_3 = \ldots = s_m = 1 \).
- Tasks: \(\tau_1 = \tau_2 = \ldots = \tau_m = (1 + \epsilon, 1) \).

Feasibility Condition:

\[
\sum_{\text{all}} u_i \leq \sum_{\text{k largest}} s_i \\
\sum_{\text{k largest}} u_i \leq \sum_{\text{k largest}} s_i
\]
Thank you!

Questions?
Worst-Fit
Assign tasks from heavy ones?

• While EDF-tu requires heavier tasks migrating, can we require lighter ones instead?
 • Actually, no, provided the HRT- or SRT- optimality is still required.
 • There is a feasible system of n tasks, where the m heaviest ones have to migrate; otherwise, the system will become infeasible.
 • Processors: \(s_1 = 1 + (m+1) \cdot \varepsilon, \quad s_2 = s_3 = \ldots = s_m = 1. \)
 • Tasks: (m heavy ones) \(\tau_1 = \tau_2 = \ldots = \tau_m = (1 + \varepsilon, 1), \)
 (n-m light ones) \(\tau_{m+1} = \tau_{m+2} = \ldots = \tau_{m+n} = (\varepsilon, n-m). \)

Formal explanation is quite mathematical, and is provided in the paper as an appendix.
The intuition is that, if any of the m heavy tasks are fixed on \(s_1, \) then a situation similar to the m-task-have-to-migrate example will occur, where the \(\varepsilon \) extra capacity on \(s_1 \) and the (n-m) light tasks do not matter much.
Linear Programming

• n*m variables.
• $x_{i,j}$ denote the share of τ_i on processor j.

• the total allocated share on each processor does not exceed the processor’s capacity;
 (each processor is not overutilized)

$$\sum_i x_{i,j} \leq s_j \quad \text{for } 1 \leq j \leq m$$

• the total allocated share of a task matches the task’s utilization.
 (each task will receive enough processor supply)

$$\sum_j x_{i,j} \geq u_i \quad \text{for } 1 \leq i \leq n$$
\[
\sum_i x_{i,j} \leq sj \quad \text{for} \ 1 \leq j \leq m
\]
\[
\sum_j x_{i,j} \geq ui \quad \text{for} \ 1 \leq i \leq n
\]

- \(x_{1,1} = 2, \ x_{1,2} = 0 \);
- \(x_{2,1} = 1, \ x_{2,2} = 1 \).

\(\tau_1 = (2,1) \)

\(\tau_2 = (2,1) \)

- \(s_1 = 3 \)
- \(s_2 = 1 \)
- \(\tau_1 = \tau_2 = (2,1) \)

Task executing in parallel is not allowed!
Example

\(s'_1: \; z_1 = 8 \)
\(s'_2: \; z_2 = 2 \)
\(s'_3: \; z_3 = 1 \)

\(J_1: \; u_1 \cdot F = 5F \)
\(J_2: \; u_2 \cdot F = 3F \)
\(J_3: \; u_3 \cdot F = 3F \)
Example

- $s_1 = 8$
- $s_2 = 4$
- $s_3 = 4$

Tasks:
- $J_1: u_1 \cdot F = 5F$
- $J_2: u_1 \cdot F = 3F$
- $J_3: u_1 \cdot F = 3F$

Fixed Tasks
Example

\[s_1 = 8 \]
\[s_2 = 4 \]
\[s_3 = 4 \]

Fixed Tasks

- \(J_1: u_1 \cdot F = 5F \)
- \(J_2: u_1 \cdot F = 3F \)
- \(J_3: u_1 \cdot F = 3F \)
Example

\[s_1 = 8 \]
\[s_2 = 4 \]
\[s_3 = 4 \]

\(J_1: u_1 \cdot F = 5F \)
\(J_2: u_1 \cdot F = 3F \)
\(J_3: u_1 \cdot F = 3F \)

Fixed Tasks
FAQs

- People complain that uniform platforms are totally unrealistic! Some executions, e.g., accesses to memory sub-systems, may not be scaled by CPU frequency (speed).
- Resolved by introducing more pessimism.

- Approximate restricted processor supplies.