Schedulability and Optimization Analysis for Non-Preemptive Static Priority Scheduling Based on Task Utilization and Blocking Factors

Georg von der Brüggen, Jian-Jia Chen, Wen-Hung Huang

Department of Computer Science, Chair 12
TU Dortmund University, Germany

09 July 2015
Preemptive vs. Non-Preemptive Scheduling

Preemptive

- τ_1
- τ_2

Non-Preemptive

- τ_1
- τ_2 blocks τ_1

Deadline Miss
Preemptive vs. Non-Preemptive Scheduling

\(\tau_1 \)

Preemptive

\(\tau_2 \)

Non-Preemptive

\(\tau_2 \) blocks \(\tau_1 \)

Deadline Miss

v. d. Brüggen, Chen, Huang (LS 12, TU Dortmund)
Preemptive vs. Non-Preemptive Scheduling

Preemptive Schedule:
- Process τ_1 starts and runs until it is preempted.
- Process τ_2 starts, runs for a period, and blocks τ_1.
- τ_1 resumes, runs for a period, and misses its deadline.

Non-Preemptive Schedule:
- Process τ_1 starts and runs until it is pre-empted by τ_2.
- Process τ_2 blocks τ_1.
- Both processes miss their deadlines due to block.
Notation

\[\tau_i(C_i, D_i, T_i), \quad U_i = \frac{C_i}{T_i} \]
\[\tau_i(C_i, D_i, T_i), \quad U_i = \frac{C_i}{T_i} \]
Notation

\[\tau_i(C_i, D_i, T_i), \ U_i = \frac{C_i}{T_i} \]
Notation

\[\tau_i(C_i, D_i, T_i), \quad U_i = \frac{C_i}{T_i} \]

Blocking Factor \(\gamma_k \):

\[\frac{B_k}{C_k} \]

Blocking Time \(B_k \)
Notation

\[\tau_i(C_i, D_i, T_i), \ U_i = \frac{C_i}{T_i} \]

Blocking Factor \(\gamma_k : \)

\[B_k : \text{Blocking Time} \]

Task Set Blocking Factor \(\gamma : \max_{\tau_k \in \tau} \{ \gamma_k \} \)
Interesting Problem: Speedup Factors

<table>
<thead>
<tr>
<th>Task Set Constraints</th>
<th>Preemptive Lower Bound</th>
<th>Preemptive Upper Bound</th>
<th>Non-Preemptive Lower Bound</th>
<th>Non-Preemptive Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit Deadline</td>
<td>1/ln(2) ≈ 1.44269</td>
<td></td>
<td>≈ 1.76322</td>
<td>2</td>
</tr>
<tr>
<td>Constrained Deadline</td>
<td>≈ 1.76322</td>
<td></td>
<td>≈ 1.76322</td>
<td>2</td>
</tr>
<tr>
<td>Arbitrary Deadline</td>
<td>≈ 1.76322</td>
<td>2</td>
<td>≈ 1.76322</td>
<td>2</td>
</tr>
</tbody>
</table>

Fixed Priority Scheduling Speedup Factors

[R. Davis, L. George, P. Courbin. Quantifying the sub-optimality of uniprocessor fixed priority non-pre-emptive scheduling. 2010.]

- $\Omega = \ln \left(\frac{1}{\Omega} \right)$ (transcendental equation)
- $\Omega \approx 0.56714$
- $\frac{1}{\Omega} \approx 1.76322$
Total utilization bounds of RM-NP with respect to $\gamma = \max_{\tau_k} \left\{ \max_{\tau_i \in l_p(\tau_k)} \left\{ \frac{C_i}{C_k} \right\} \right\}$

provided Andersson and Tovar (2009)
Response Time of τ_k (Example: τ_4)

$\tau_1 = (2, 8, 8)$

$\tau_2 = (2, 10, 10)$

$\tau_3 = (3, 12, 12)$

$\tau_4 = (3, 23, 35)$

$\tau_b = (2, 99, 99)$

The schedule according to Deadline Monotonic

$\exists t$ with $0 < t \leq D_k - C_k$ and $B_k + \sum_{i=1}^{k-1} \left(\left\lfloor \frac{t}{T_i} \right\rfloor + 1 \right) C_i \leq t$
Response Time of τ_k (Example: τ_4)

$\tau_1 = (2, 8, 8)$
$\tau_2 = (2, 10, 10)$
$\tau_3 = (3, 12, 12)$
$\tau_4 = (3, 23, 35)$
$\tau_b = (2, 99, 99)$

The schedule according to Deadline Monotonic

$\exists t$ with $0 < t \leq D_k - C_k$ and $B_k + \sum_{i=1}^{k-1} \left(\left\lceil \frac{t}{T_i} \right\rceil + 1 \right) C_i \leq t$
Response Time of τ_k (Example: τ_4)

$\tau_1 = (2, 8, 8)$
$\tau_2 = (2, 10, 10)$
$\tau_3 = (3, 12, 12)$
$\tau_4 = (3, 23, 35)$
$\tau_b = (2, 99, 99)$

The schedule according to Deadline Monotonic

$\exists t$ with $0 < t \leq D_k - C_k$ and $B_k + \sum_{i=1}^{k-1} \left(\left\lfloor \frac{t}{T_i} \right\rfloor + 1 \right) C_i \leq t$

$\Rightarrow \exists t$ with $0 < t \leq D_k - C_k$ and $B_k + \sum_{i=1}^{k-1} \left\lfloor \frac{t}{T_i} \right\rfloor C_i \leq t$
Self-Pushing Phenomenon

The worst-case response time of a non-preemptive task occurs in the first job if the task is activated at its critical instant and the following two conditions are both satisfied:

1. the task set is feasible under preemptive scheduling;
2. the relative deadlines are less than or equal to periods.
Preemptive and Non-Preemptive Case Simultaneously

\[\tau_1 = (2, 8, 8) \]
\[\tau_2 = (2, 10, 10) \]
\[\tau_3 = (3, 12, 12) \]
\[\tau_4 = (3, 23, 35) \]
\[\tau_b = (2, 99, 99) \]

The schedule according to Deadline Monotonic

\[\text{NP: } \exists t \text{ with } 0 < t \leq D_k - C_k \]
\[\text{and } B_k + \sum_{i=1}^{k-1} \left\lceil \frac{t}{T_i} \right\rceil C_i \leq t \]

\[\text{P: } \exists t \text{ with } 0 < t \leq D_k \]
\[\text{and } C_k + \sum_{i=1}^{k-1} \left\lceil \frac{t}{T_i} \right\rceil C_i \leq t \]
Preemptive and Non-Preemptive Case Simultaneously

\[\tau_1 = (2, 8, 8) \]
\[\tau_2 = (2, 10, 10) \]
\[\tau_3 = (3, 12, 12) \]
\[\tau_4 = (3, 23, 35) \]
\[\tau_b = (2, 99, 99) \]

The schedule according to Deadline Monotonic

NP: \(\exists t \) with \(0 < t \leq D_k - C_k \) and \(B_k + \sum_{i=1}^{k-1} \left\lceil \frac{t}{T_i} \right\rceil C_i \leq t \)

P: \(\exists t \) with \(0 < t \leq D_k \) and \(C_k + \sum_{i=1}^{k-1} \left\lceil \frac{t}{T_i} \right\rceil C_i \leq t \)
Preemptive and Non-Preemptive Case Simultaneously

\(\tau_1 = (2, 8, 8) \)

\(\tau_2 = (2, 10, 10) \)

\(\tau_3 = (3, 12, 12) \)

\(\tau_4 = (3, 23, 35) \)

\(\tau_b = (2, 99, 99) \)

The schedule according to Deadline Monotonic

NP: \(\exists t \text{ with } 0 < t \leq D_k - C_k \) and \(B_k + \sum_{i=1}^{k-1} \left\lceil \frac{t}{T_i} \right\rceil C_i \leq t \)

P: \(\exists t \text{ with } 0 < t \leq D_k \) and \(C_k + \sum_{i=1}^{k-1} \left\lceil \frac{t}{T_i} \right\rceil C_i \leq t \)
Preemptive and Non-Preemptive Case Simultaneously

$\tau_1 = (2, 8, 8)$

$\tau_2 = (2, 10, 10)$

$\tau_3 = (3, 12, 12)$

$\tau_4 = (3, 23, 35)$

$\tau_b = (2, 99, 99)$

The schedule according to Deadline Monotonic

NP: $\exists t$ with $0 < t \leq D_k - C_k$ and $B_k + \sum_{i=1}^{k-1} \left\lfloor \frac{t}{T_i} \right\rfloor C_i \leq t$

P: $\exists t$ with $0 < t \leq D_k$ and $C_k + \sum_{i=1}^{k-1} \left\lfloor \frac{t}{T_i} \right\rfloor C_i \leq t$

NP+P: $\exists t$ with $0 < t \leq D_k$ and $B_k + C_k + \sum_{i=1}^{k-1} \left\lfloor \frac{t}{T_i} \right\rfloor C_i \leq t$
Aims of the Paper

\(NP^+P: \exists t \text{ with } 0 < t \leq D_k \text{ and } B_k + C_k + \sum_{i=1}^{k-1} \left\lfloor \frac{t}{T_i} \right\rfloor C_i \leq t \)

- Easy sufficient schedulability test
 - Good Runtime: \(O(k) \)
 - Utilization of higher priority tasks
 - Blocking time
- Hyperbolic form
 - Good Runtime: \(O(n) \)
- Speedup Factor
 - Non-preemptive deadline monotonic
 - Non-preemptive rate monotonic
- Utilization bounds for non-preemptive rate monotonic
 - Depending on blocking factor
 - Blocking factor \(\leq 2 \)
Sufficient Linear Time Schedulability Test for τ_k

$\tau_1 = (2, 8, 8)$

$\tau_2 = (2, 10, 10)$

$\tau_3 = (3, 12, 12)$

$\tau_4 = (3, 23, 35)$

$\tau_b = (2, 99, 99)$

The schedule according to Deadline Monotonic

$\exists t_j \in \{t_1, t_2, \ldots, t_{k-1}, t_k\}$ and $B_k + C_k + \sum_{i=1}^{k-1} \left\lceil \frac{t_j}{T_i} \right\rceil C_i \leq t_j$
Sufficient Linear Time Schedulability Test for τ_k

$\tau_3 = (3, 12, 12)$
$\tau_1 = (2, 8, 8)$
$\tau_2 = (2, 10, 10)$
$\tau_4 = (3, 23, 35)$
$\tau_b = (2, 99, 99)$

$\exists t_j \in \{t_1, t_2, \ldots, t_{k-1}, t_k\}$ and $B_k + C_k + \sum_{i=1}^{k-1} \left\lceil \frac{t_j}{T_i} \right\rceil C_i \leq t_j$
Splitting the Summation

\[\tau_3 = (3, 12, 12) \]
\[\tau_1 = (2, 8, 8) \]
\[\tau_2 = (2, 10, 10) \]
\[\tau_4 = (3, 23, 35) \]
\[\tau_b = (2, 99, 99) \]

\[\exists t_j \in \{t_1, \ldots, t_k\} \quad \text{and} \quad B_k + C_k + \sum_{i=1}^{k-1} \left\lceil \frac{t_j}{T_i} \right\rceil C_i \leq t_j \]
Splitting the Summation

\[\tau_3 = (3, 12, 12) \]
\[\tau_1 = (2, 8, 8) \]
\[\tau_2 = (2, 10, 10) \]
\[\tau_4 = (3, 23, 35) \]
\[\tau_b = (2, 99, 99) \]

Releases before last:
\[\exists t_j \in \{ t_1, \ldots, t_k \} \text{ and } B_k + C_k + \sum_{i=1}^{k-1} \left\lceil \frac{t_j}{T_i} \right\rceil C_i \leq t_j \]
Splitting the Summation

\[\tau_3 = (3, 12, 12) \]
\[\tau_1 = (2, 8, 8) \]
\[\tau_2 = (2, 10, 10) \]
\[\tau_4 = (3, 23, 35) \]
\[\tau_b = (2, 99, 99) \]

\[\exists t_j \in \{ t_1, \ldots, t_k \} \text{ and } B_k + C_k + \sum_{i=1}^{k-1} \left\lceil \frac{t_j}{T_i} \right\rceil C_i \leq t_j \]

\[\Rightarrow \exists t_j \in \{ t_1, \ldots, t_k \} \text{ and } B_k + C_k + \sum_{i=1}^{k-1} \left\lceil \frac{t_i}{T_i} \right\rceil C_i + \sum_{i=1}^{j-1} C_i \leq t_j \]
Splitting the Summation

\[\tau_3 = (3, 12, 12) \]
\[\tau_1 = (2, 8, 8) \]
\[\tau_2 = (2, 10, 10) \]
\[\tau_4 = (3, 23, 35) \]
\[\tau_b = (2, 99, 99) \]

\[\exists t_j \in \{ t_1, \ldots, t_k \} \text{ and } B_k + C_k + \sum_{i=1}^{k-1} \left\lceil \frac{t_j}{T_i} \right\rceil C_i \leq t_j \]

\[\Rightarrow \exists t_j \in \{ t_1, \ldots, t_k \} \text{ and } B_k + C_k + \sum_{i=1}^{k-1} \frac{t_i}{T_i} C_i + \sum_{i=1}^{j-1} C_i \leq t_j \]
Splitting the Summation

\[\tau_3 = (3, 12, 12) \]
\[\tau_1 = (2, 8, 8) \]
\[\tau_2 = (2, 10, 10) \]
\[\tau_4 = (3, 23, 35) \]
\[\tau_b = (2, 99, 99) \]

\[\exists t_j \in \{ t_1, \ldots, t_k \} \text{ and } B_k + C_k + \sum_{i=1}^{k-1} \left\lceil \frac{t_j}{T_i} \right\rceil C_i \leq t_j \]

\[\Rightarrow \exists t_j \in \{ t_1, \ldots, t_k \} \text{ and } B_k + C_k + \sum_{i=1}^{k-1} \frac{t_i}{T_i} C_i + \sum_{i=1}^{j-1} C_i \leq t_j \]

\[\Rightarrow \exists t_j \in \{ t_1, \ldots, t_k \} \text{ and } B_k + C_k + \sum_{i=1}^{k-1} t_i U_i + \sum_{i=1}^{j-1} t_i U_i \leq t_j \]
Test for τ_k in Hyperbolic Form (Theorem 1)

- Non-preemptive sporadic task system
- Constrained deadlines
- Fixed priority scheduling
- Schedulability of higher priority tasks has already been ensured

Theorem 1

A task τ_k is schedulable if:

$$\left(\frac{B_k + C_k}{D_k} + 1 \right) \prod_{\tau_j \in \text{hp}(\tau_k)} (U_j + 1) \leq 2$$

Runtime: $O(n)$
Speedup Factor for DM-NP and RM-NP

<table>
<thead>
<tr>
<th>Task Set Constraints</th>
<th>Preemptive</th>
<th>Non-Preemptive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td></td>
<td>Bound</td>
<td>Bound</td>
</tr>
<tr>
<td>Implicit Deadline</td>
<td>$1/\ln(2) \approx 1.44269$</td>
<td>≈ 1.76322</td>
</tr>
<tr>
<td>Constrained Deadline</td>
<td>≈ 1.76322</td>
<td>≈ 1.76322</td>
</tr>
<tr>
<td>Arbitrary Deadline</td>
<td>≈ 1.76322</td>
<td>2</td>
</tr>
</tbody>
</table>
Utilization Bound for RM-NP

Theorem 3
Suppose that the tasks are indexed such that \(T_i \leq T_{i+1} \). If \(\gamma = \max_{\tau_i \in Ip(\tau_k)} \left\{ \frac{C_i}{C_k} \right\} = \frac{B_k}{C_k} \), then task \(\tau_k \) is schedulable by RM-NP if

\[
U_{sum} \leq \begin{cases}
\left(\left(\frac{2}{1+\gamma} \right)^{\frac{1}{k}} - \frac{1}{1+\gamma} \right) + (k-1) \left(\left(\frac{2}{1+\gamma} \right)^{\frac{1}{k}} - 1 \right) & \text{if } \gamma \leq 1 \\
\frac{1}{1+\gamma} & \text{if } \gamma > 1
\end{cases}
\]

Theorem 4
Suppose that \(\gamma = \max_{\tau_k} \left\{ \max_{\tau_i \in Ip(\tau_k)} \left\{ \frac{C_i}{C_k} \right\} \right\} \). A task set can be feasibly scheduled by RM-NP if

\[
U_{sum} \leq \begin{cases}
\frac{\gamma}{\gamma+1} + \ln \left(\frac{2}{1+\gamma} \right) & \text{if } \gamma \leq 1 \\
\frac{1}{1+\gamma} & \text{if } \gamma > 1
\end{cases}
\]
Utilization Bound for RM-NP

Total utilization bounds of RM-NP with respect to $\gamma = \max_{\tau_k} \left\{ \max_{\tau_i \in lp(\tau_k)} \left\{ \frac{C_i}{C_k} \right\} \right\}$

Comparison: Andersson and Tovar (2009) and Theorem 4
Tighter Schedulability Test

Testing schedulability in two equations:

NP: \(\exists t \ 0 < t \leq D_k - C_k \) and \(B_k + \sum_{i=1}^{k-1} \left\lceil \frac{t_j}{T_i} \right\rceil C_i \leq t \)

P: \(\exists t \ 0 < t \leq D_k \) and \(C_k + \sum_{i=1}^{k-1} \left\lceil \frac{t_j}{T_i} \right\rceil C_i \leq t \)

Theorem 6

A task \(\tau_k \) is schedulable by a fixed priority non-preemptive scheduling algorithm \(A \) if all higher priority tasks are schedulable and the following two conditions hold:

\[
\left(\frac{B_k}{D_k - C_k} + 1 \right) \prod_{\tau_j \in hp(\tau_k)} (U_j + 1) \leq 2 \\
\left(\frac{C_k}{D_k} + 1 \right) \prod_{\tau_j \in hp(\tau_k)} (U_j + 1) \leq 2
\]
Theorem 9

Suppose that $\gamma = \max_{\tau_k} \left\{ \max_{\tau_i \in lp(\tau_k)} \left\{ \frac{C_i}{C_k} \right\} \right\}$. A task set can be feasibly scheduled by RM-NP if

$$U_{sum} \leq \begin{cases} \ln(2) \approx 0.693 & \text{if } \gamma \leq \frac{1-\ln(2)}{\ln(2)} \\ \frac{1}{1+\gamma} & \text{if } \gamma > \frac{1-\ln(2)}{\ln(2)} \end{cases}$$
Total utilization bounds of RM-NP with respect to $\gamma = \max_{\tau_k} \left\{ \max_{\tau_i \in \text{lp}(\tau_k)} \left\{ \frac{C_i}{C_k} \right\} \right\}$ provided by Andersson and Tovar, Theorem 4 and Theorem 9.
Results

- First schedulability test in hyperbolic form for non-preemptive fixed priority scheduling
- Tighter schedulability test based on two individual equations in hyperbolic form
- Tight speedup factors of $\frac{1}{\Omega} \approx 1.76322$ for Deadline Monotonic (DM) and Rate Monotonic (RM) non-preemptive scheduling in comparison to non-preemptive Earliest Deadline First (EDF)
- Utilization bounds for Rate Monotonic scheduling depending on the blocking factor $\gamma = \max_{\tau_k} \left\{ \max_{\tau_i \in l_p(\tau_k)} \left\{ \frac{C_i}{C_k} \right\} \right\}$ if $\gamma < 2$
Results

• First schedulability test in hyperbolic form for non-preemptive fixed priority scheduling
• Tighter schedulability test based on two individual equations in hyperbolic form
• Tight speedup factors of $\frac{1}{\Omega} \approx 1.76322$ for Deadline Monotonic (DM) and Rate Monotonic (RM) non-preemptive scheduling in comparison to non-preemptive Earliest Deadline First (EDF)
• Utilization bounds for Rate Monotonic scheduling depending on the blocking factor $\gamma = \max_{\tau_k} \left\{ \max_{\tau_i \in \text{lp}(\tau_k)} \left\{ \frac{C_i}{C_k} \right\} \right\}$
 if $\gamma < 2$

Thank You!